Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters











Publication year range
1.
Anal Chem ; 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39284018

ABSTRACT

In the realm of disease diagnostics, particularly for conditions such as proteinuria and hemoglobinuria, the quest for a method that combines accurate, label-free detection of protein compositions and their conformational changes remains a formidable challenge. In this study, we introduce an innovative Ag/Au plasmonic hybrid coupling nanoarray (Ag/Au PHCN) architecture marked by sub-10 nm interparticle gaps. These nanoarrays, leveraging plasmonic hybrid coupling and synergistic enhancement mechanisms, create a plethora of uniform surface-enhanced Raman spectroscopy (SERS) hotspots. The Ag/Au PHCN substrates demonstrated unparalleled sensitivity in the unmarked detection of hemoglobin (HGB), bovine serum albumin (BSA), and cytochrome C (Cyt.C) in bodily fluids, incorporating the advantages of high sensitivity, high reproducibility, durability, recyclability, and biocompatibility. Notably, the detection limits for BSA and HGB are unprecedented at 0.5 and 5 ng/mL, respectively. This achievement sets a new benchmark for label-free protein detection using two-dimensional nanostructures. Crucially, the Ag/Au PHCNs possess the novel capability to discern protein conformational changes post denaturation, underscoring their potential in probing protein functionalities. Most importantly, these nanoarrays can differentiate between normal and proteinuria-affected urine samples and monitor protein content variations over time, heralding a new era in clinical diagnostics with particular relevance to proteinuria and hemoglobinuria detection.

2.
ACS Appl Mater Interfaces ; 16(29): 38177-38187, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39011741

ABSTRACT

Defective metal-organic frameworks (MOFs) have shown great potential for catalysis due to abundant active sites and adjustable physical and chemical properties. A series of Ce-based MOFs with different defect contents were synthesized via a modulator-induced defect engineering strategy with the aid of the cell pulverization technique. The effects of modulators on the pore structure, morphology, valence distribution of Ce, and Lewis acidity of Ce-MOF-801 were systematically investigated. Among the different samples studied, the optimal Ce-MOF-801-50eq sample exhibited remarkable catalytic activity for DCPD hydrogenation, achieving a conversion rate of 100%, which is significantly higher compared to other Ce-MOF-801-neq samples as well as the Zr-MOF-801-50eq and Hf-MOF-801-50eq samples. The enhanced catalytic performance of Ce-MOF-801-50eq can be attributed to advantages provided by defect engineering, such as the high specific surface area, proper pore size distribution, abundant unsaturated metal sites, and Ce3+/Ce4+ atom ratio, which have been supported by various characterizations. This study provides important insights into the rational design of Ce-MOFs in the field of catalytic DCPD hydrogenation.

3.
PeerJ ; 12: e17559, 2024.
Article in English | MEDLINE | ID: mdl-38854798

ABSTRACT

Background: To investigate the effects of arsenic trioxide (ATO) on human colorectal cancer cells (HCT116) growth and the role of transient receptor potential melastatin 4 (TRPM4) channel in this process. Methods: The viability of HCT116 cells was assessed using the CCK-8 assay. Western blot analysis was employed to examine the protein expression of TRPM4. The apoptosis of HCT116 cells was determined using TUNEL and Flow cytometry. Cell migration was assessed through the cell scratch recovery assay and Transwell cell migration assay. Additionally, Transwell cell invasion assay was performed to determine the invasion ability of HCT116 cells. Results: ATO suppressed the viability of HCT116 cells in a dose-dependent manner, accompanied by a decline in cell migration and invasion, and an increase in apoptosis. 9-phenanthroline (9-Ph), a specific inhibitor of TRPM4, abrogated the ATO-induced upregulation of TRPM4 expression. Additionally, blocking TRPM4 reversed the effects of ATO on HCT116 cells proliferation, including restoration of cell viability, migration and invasion, as well as the inhibition of apoptosis. Conclusion: ATO inhibits CRC cell growth by inducing TRPM4 expression, our findings indicate that ATO is a promising therapeutic strategy and TRPM4 may be a novel target for the treatment of CRC.


Subject(s)
Apoptosis , Arsenic Trioxide , Cell Movement , Cell Proliferation , Cell Survival , Colorectal Neoplasms , TRPM Cation Channels , Humans , TRPM Cation Channels/metabolism , TRPM Cation Channels/antagonists & inhibitors , TRPM Cation Channels/genetics , Arsenic Trioxide/pharmacology , Colorectal Neoplasms/pathology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , HCT116 Cells , Cell Movement/drug effects , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Oxides/pharmacology , Antineoplastic Agents/pharmacology , Neoplasm Invasiveness , Arsenicals/pharmacology
4.
Adv Sci (Weinh) ; 11(32): e2405416, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38923362

ABSTRACT

Surface-enhanced Raman scattering (SERS) imaging technology faces significant technical bottlenecks in ensuring balanced spatial resolution, preventing image bias induced by substrate heterogeneity, accurate quantitative analysis, and substrate preparation that enhances Raman signal strength on a global scale. To systematically solve these problems, artificial intelligence techniques are applied to analyze the signals of pesticides based on 3D and dynamic SERS imaging. Utilizing perovskite/silver nanoparticles composites (CaTiO3/Ag@BONPs) as enhanced substrates, enabling it not only to cleanse pesticide residues from the surface to pulp of fruits and vegetables, but also to investigate the penetration dynamics of an array of pesticides (chlorpyrifos, thiabendazole, thiram, and acetamiprid). The findings challenge existing paradigms, unveiling a previously unnoticed weakening process during pesticide invasion and revealing the surprising permeability of non-systemic pesticides. Of particular note is easy to overlook that the combined application of pesticides can inadvertently intensify their invasive capacity due to pesticide interactions. The innovative study delves into the realm of pesticide penetration, propelling a paradigm shift in the understanding of food safety. Meanwhile, this strategy provides strong support for the cutting-edge application of SERS imaging technology and also brings valuable reference and enlightenment for researchers in related fields.


Subject(s)
Machine Learning , Pesticides , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Pesticides/metabolism , Pesticides/chemistry , Silver/chemistry , Crops, Agricultural/metabolism , Crops, Agricultural/chemistry , Metal Nanoparticles/chemistry , Vegetables/chemistry , Vegetables/metabolism , Fruit/chemistry , Fruit/metabolism
5.
J Phys Chem Lett ; 15(20): 5436-5444, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38743952

ABSTRACT

The excellent reactivity of frustrated Lewis pairs (FLP) to activate small molecules has gained increasing attention in recent decades. Though the development of surface FLP (SFLP) is prompting the application of FLP in the chemical industry, the design of SFLP with superior activity, high density, and excellent stability for small-molecule activation is still challenging. Herein, we review the progress of designing SFLP by surface engineering, screening natural SFLP, and the dynamic formation of SFLP from theoretical perspectives. We highlight the breakthrough in fine-tuning the activity, density, and stability of the designed SFLP studied by using computational methods. We also discuss future challenges and directions in designing SFLP with outstanding capabilities for small-molecule activation.

6.
Angew Chem Int Ed Engl ; 63(23): e202405405, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38578834

ABSTRACT

The surface frustrated Lewis pairs (SFLPs) open up new opportunities for substituting noble metals in the activation and conversion of stable molecules. However, the applications of SFLPs on a larger scale are impeded by the complex construction process, low surface density, and sensitivity to the reaction environment. Herein, wurtzite-structured crystals such as GaN, ZnO, and AlP are found for developing natural, dense, and stable SFLPs. It is revealed that the SFLPs can naturally exist on the (100) and (110) surfaces of wurtzite-structured crystals. All the surface cations and anions serve as the Lewis acid and Lewis base in SFLPs, respectively, contributing to the surface density of SFLPs as high as 7.26×1014 cm-2. Ab initio molecular dynamics simulations indicate that the SFLPs can keep stable under high temperatures and the reaction atmospheres of CO and H2O. Moreover, outstanding performance for activating the given small molecules is achieved on these natural SFLPs, which originates from the optimal orbital overlap between SFLPs and small molecules. Overall, these findings not only provide a simple method to obtain dense and stable SFLPs but also unfold the nature of SFLPs toward the facile activation of small molecules.

7.
J Hepatol ; 80(6): 834-845, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38331323

ABSTRACT

BACKGROUND & AIMS: Accumulating evidence has indicated the presence of mature microRNAs (miR) in the nucleus, but their effects on steatohepatitis remain elusive. We have previously demonstrated that the intranuclear miR-204-3p in macrophages protects against atherosclerosis, which shares multiple risk factors with metabolic dysfunction-associated steatotic liver disease (MASLD). Herein, we aimed to explore the functional significance of miR-204-3p in steatohepatitis. METHODS: miR-204-3p levels and subcellular localization were assessed in the livers and peripheral blood mononuclear cells of patients with MASLD. Wild-type mice fed high-fat or methionine- and choline-deficient diets were injected with an adeno-associated virus system containing miR-204-3p to determine the effect of miR-204-3p on steatohepatitis. Co-culture systems were applied to investigate the crosstalk between macrophages and hepatocytes or hepatic stellate cells (HSCs). Multiple high-throughput epigenomic sequencings were performed to explore miR-204-3p targets. RESULTS: miR-204-3p expression decreased in livers and macrophages in mice and patients with fatty liver. In patients with MASLD, miR-204-3p levels in peripheral blood mononuclear cells were inversely related to the severity of hepatic inflammation and damage. Macrophage-specific miR-204-3p overexpression reduced steatohepatitis in high-fat or methionine- and choline-deficient diet-fed mice. miR-204-3p-overexpressing macrophages inhibited TLR4/JNK signaling and pro-inflammatory cytokine release, thereby limiting fat deposition and inflammation in hepatocytes and fibrogenic activation in HSCs. Epigenomic profiling identified miR-204-3p as a specific regulator of ULK1 expression. ULK1 transcription and VPS34 complex activation by intranuclear miR-204-3p improved autophagic flux, promoting the anti-inflammatory effects of miR-204-3p in macrophages. CONCLUSIONS: miR-204-3p inhibits macrophage inflammation, coordinating macrophage actions on hepatocytes and HSCs to ameliorate steatohepatitis. Macrophage miR-204-3p may be a therapeutic target for MASLD. IMPACT AND IMPLICATIONS: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a chronic inflammatory disease ranging from simple steatosis to steatohepatitis. However, the molecular mechanisms underlying the progression of MASLD remain incompletely understood. Here, we demonstrate that miR-204-3p levels in circulating peripheral blood mononuclear cells are negatively correlated with disease severity in patients with MASLD. Nuclear miR-204-3p activates ULK1 transcription and improves autophagic flux, limiting macrophage activation and hepatic steatosis. Our study provides a novel understanding of the mechanism of macrophage autophagy and inflammation in steatohepatitis and suggests that miR-204-3p may act as a potential therapeutic target for MASLD.


Subject(s)
Fatty Liver , MicroRNAs , Animals , Mice , Autophagy-Related Protein-1 Homolog , Diet, High-Fat/adverse effects , Disease Models, Animal , Fatty Liver/metabolism , Fatty Liver/genetics , Fatty Liver/etiology , Hepatocytes/metabolism , Liver/metabolism , Liver/pathology , Macrophages/metabolism , Mice, Inbred C57BL , MicroRNAs/genetics , MicroRNAs/metabolism , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics
8.
Br J Pharmacol ; 181(5): 640-658, 2024 03.
Article in English | MEDLINE | ID: mdl-37702564

ABSTRACT

BACKGROUND AND PURPOSE: Atherosclerosis induced by cyclosporine A (CsA), an inhibitor of the calcineurin/nuclear factor of activated T cells (NFAT) pathway, is a major concern after organ transplantation. However, the atherosclerotic mechanisms of CsA remain obscure. We previously demonstrated that calcineurin/NFAT signalling inhibition contributes to atherogenesis via suppressing microRNA-204 (miR-204) transcription. We therefore hypothesised that miR-204 is involved in the development of CsA-induced atherosclerosis. EXPERIMENTAL APPROACH: ApoE-/- mice with macrophage-miR-204 overexpression were generated to determine the effects of miR-204 on CsA-induced atherosclerosis. Luciferase reporter assays and chromatin immunoprecipitation sequencing were performed to explore the targets mediating miR-204 effects. KEY RESULTS: CsA alone did not significantly affect atherosclerotic lesions or serum lipid levels. However, it exacerbated high-fat diet-induced atherosclerosis and hyperlipidemia in C57BL/6J and ApoE-/- mice, respectively. miR-204 levels decreased in circulating monocytes and plaque lesions during CsA-induced atherosclerosis. The upregulation of miR-204 in macrophages inhibited CsA-induced atherosclerotic plaque formation but did not affect serum lipid levels. miR-204 limited the CsA-induced foam cell formation by reducing the expression of the scavenger receptors SR-BII and CD36. SR-BII was post-transcriptionally regulated by mature miR-204-5p via 3'-UTR targeting. Additionally, nuclear-localised miR-204-3p prevented the CsA-induced binding of Ago2 to the CD36 promoter, suppressing CD36 transcription. SR-BII or CD36 expression restoration dampened the beneficial effects of miR-204 on CsA-induced atherosclerosis. CONCLUSION AND IMPLICATIONS: Macrophage miR-204 ameliorates CsA-induced atherosclerosis, suggesting that miR-204 may be a potential target for the prevention and treatment of CsA-related atherosclerotic side effects.


Subject(s)
Atherosclerosis , MicroRNAs , Plaque, Atherosclerotic , Animals , Mice , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Atherosclerosis/chemically induced , Atherosclerosis/genetics , Calcineurin/metabolism , CD36 Antigens/metabolism , Cyclosporine/adverse effects , Cyclosporine/metabolism , Lipids , Macrophages , Mice, Inbred C57BL , MicroRNAs/genetics , MicroRNAs/metabolism , Plaque, Atherosclerotic/chemically induced , Plaque, Atherosclerotic/metabolism
9.
Acta Pharmacol Sin ; 45(3): 517-530, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37880339

ABSTRACT

Malignant ventricular arrhythmia (VA) after myocardial infarction (MI) is mainly caused by myocardial electrophysiological remodeling. Brahma-related gene 1 (BRG1) is an ATPase catalytic subunit that belongs to a family of chromatin remodeling complexes called Switch/Sucrose Non-Fermentable Chromatin (SWI/SNF). BRG1 has been reported as a molecular chaperone, interacting with various transcription factors or proteins to regulate transcription in cardiac diseases. In this study, we investigated the potential role of BRG1 in ion channel remodeling and VA after ischemic infarction. Myocardial infarction (MI) mice were established by ligating the left anterior descending (LAD) coronary artery, and electrocardiogram (ECG) was monitored. Epicardial conduction of MI mouse heart was characterized in Langendorff-perfused hearts using epicardial optical voltage mapping. Patch-clamping analysis was conducted in single ventricular cardiomyocytes isolated from the mice. We showed that BRG1 expression in the border zone was progressively increased in the first week following MI. Cardiac-specific deletion of BRG1 by tail vein injection of AAV9-BRG1-shRNA significantly ameliorated susceptibility to electrical-induced VA and shortened QTc intervals in MI mice. BRG1 knockdown significantly enhanced conduction velocity (CV) and reversed the prolonged action potential duration in MI mouse heart. Moreover, BRG1 knockdown improved the decreased densities of Na+ current (INa) and transient outward potassium current (Ito), as well as the expression of Nav1.5 and Kv4.3 in the border zone of MI mouse hearts and in hypoxia-treated neonatal mouse ventricular cardiomyocytes. We revealed that MI increased the binding among BRG1, T-cell factor 4 (TCF4) and ß-catenin, forming a transcription complex, which suppressed the transcription activity of SCN5A and KCND3, thereby influencing the incidence of VA post-MI.


Subject(s)
Myocardial Infarction , Mice , Animals , Myocardial Infarction/metabolism , Arrhythmias, Cardiac/genetics , Myocardium/pathology , Transcription Factors/genetics , Transcription Factors/metabolism , Myocytes, Cardiac/metabolism
10.
Eur J Pharmacol ; 957: 176039, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37678658

ABSTRACT

Cardiovascular diseases have been closely linked to abnormal epigenetic regulation. In the context of epigenetic regulation, BRG1, a pivotal SWI/SNF chromatin remodeling enzyme, emerges as a key epigenetic regulator with significant impact on the development and progression of cardiovascular disorders. From the perspective of epigenetic regulation of cardiovascular diseases, BRG1 emerges as a pivotal SWI/SNF chromatin remodeling enzyme, functioning as a key epigenetic regulator. It exerts substantial influence on the development and progression of cardiovascular disorders by exerting precise control over gene expression and protein levels. Therefore, a comprehensive understanding of BRG1's epigenetic regulatory role in cardiovascular disease is essential for unraveling its underlying pathophysiological mechanisms. This paper summarizes and discusses the function of BRG1 in the epigenetic regulation of cardiovascular diseases.


Subject(s)
Cardiovascular Diseases , Humans , Cardiovascular Diseases/genetics , Epigenesis, Genetic , Chromatin
11.
Pharmaceuticals (Basel) ; 16(6)2023 May 26.
Article in English | MEDLINE | ID: mdl-37375744

ABSTRACT

The chemotherapy drug doxorubicin (DOX) is an anthracycline with over 30% incidence of liver injury in breast cancer patients, yet the mechanism of its hepatotoxicity remains unclear. To identify potential biomarkers for anthracycline-induced hepatotoxicity (AIH), we generated clinically-relevant mouse and rat models administered low-dose, long-term DOX. These models exhibited significant liver damage but no decline in cardiac function. Through untargeted metabolic profiling of the liver, we identified 27 differential metabolites in a mouse model and 28 in a rat model. We then constructed a metabolite-metabolite network for each animal model and computationally identified several potential metabolic markers, with particular emphasis on aromatic amino acids, including phenylalanine, tyrosine, and tryptophan. We further performed targeted metabolomics analysis on DOX-treated 4T1 breast cancer mice for external validation. We found significant (p < 0.001) reductions in hepatic levels of phenylalanine and tyrosine (but not tryptophan) following DOX treatment, which were strongly correlated with serum aminotransferases (ALT and AST) levels. In summary, the results of our study present compelling evidence supporting the use of phenylalanine and tyrosine as metabolic signatures of AIH.

12.
PeerJ ; 11: e15407, 2023.
Article in English | MEDLINE | ID: mdl-37250720

ABSTRACT

Background: PFI-3 is a small-molecule inhibitor that targets the bromodomains (BRDs) of Brahma-related gene 1 (BRG1). This monomeric compound, which has high selectivity and potent cellular effects, has recently been developed. Although PFI-3 has been reported as a potential therapeutic agent targeting thrombomodulin, its role in the regulation of vascular function remains unknown. Therefore, we aimed to investigate the impact of PFI-3 on arterial vessel tone. Methods: A microvascular tension measurement device (DMT) was utilized to identify alterations in vascular tension within the mesenteric artery. To detect variations in cytosolic [Ca2+]i, a Fluo-3/AM fluorescent probe and fluorescence microscope were employed. Additionally, whole-cell patch clamp techniques were utilized to evaluate the activity of L-type voltage-dependent calcium channels (VDCCs) in cultured arterial smooth muscle cells (A10 cells). Results: PFI-3 exerted a dose-dependent relaxation effect on rat mesenteric arteries with both intact and denuded endothelium after phenylephrine (PE)- and high-K+-induced constriction. PFI-3-induced vasorelaxation was not affected by the presence of L-NAME/ODQ or K+ channel blockers (Gli/TEA). PFI-3 abolished Ca2+-induced contraction on endothelium-denuded mesenteric arteries preincubated by PE in Ca2+-free solution. Incubation with TG had no impact on PFI-3-induced vasorelaxation pre-contracted by PE. PFI-3 reduced Ca2+-induced contraction on endothelium-denuded mesenteric arteries pre-incubated by KCl (60 mM) in Ca2+-free solution. PFI-3 declined extracellular calcium influx in A10 cells detected by Fluo-3/AM fluorescent probe and fluorescence microscope. Furthermore, we observed that PFI-3 decreased the current densities of L-type VDCC by whole-cell patch clamp techniques. Conclusions: PFI-3 blunted PE and high K+-induced vasoconstriction independent of endothelium on rat mesenteric artery. The vasodilatory effect of PFI-3 may be attributed to its inhibition of VDCCs and receptor-operated calcium channels (ROCCs) on vascular smooth muscle cells (VSMCs).


Subject(s)
Calcium , Fluorescent Dyes , Animals , Rats , Calcium/metabolism , Calcium Channels, L-Type/pharmacology , Fluorescent Dyes/pharmacology , Mesenteric Arteries
13.
J Colloid Interface Sci ; 638: 349-362, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36746053

ABSTRACT

To address the "trade-off" between conductivity and stability of anion exchange membranes (AEMs), we developed a series of crosslinked AEMs by using polybenzimidazole with norbornene (cPBI-Nb) as backbone and the crosslinked structure was fabricated by adopting click chemical between thiol and vinyl-group. Meanwhile, the hydrophilic properties of the dithiol cross-linker were regulated to explore the effect for micro-phase separation morphology and hydroxide ion conductivity. As result, the AEMs with hydrophilic crosslinked structure (PcPBI-Nb-C2) not only had apparent micro-phase separation morphology and high OH- conductivity of 105.54 mS/cm at 80 °C, but also exhibited improved mechanical properties, dimensional stability (swelling ratio < 15%) and chemical stability (90.22 % mass maintaining in Fenton's reagent at 80 °C for 24 h, 78.30 % conductivity keeping in 2 M NaOH at 80 °C for 2016 h). In addition, the anion exchange membranes water electrolysis (AEMWEs) using PcPBI-Nb-C2 as AEMs achieved the current density of 368 mA/cm2 at 2.1 V and the durability over 500 min operated at 150 mA/cm2 under 60 °C. Therefore, this work paves the way for constructing AEMs by introduction of norbornene into polybenzimidazole and formation of hydrophilic crosslinked structure based on "thiol-ene".

14.
Front Pharmacol ; 14: 1340247, 2023.
Article in English | MEDLINE | ID: mdl-38269270

ABSTRACT

Background: Vascular endothelial injury is a contributing factor to the development of atherosclerosis and the resulting cardiovascular diseases. One particular factor involved in endothelial cell apoptosis and atherosclerosis is palmitic acid (PA), which is a long-chain saturated fatty acid. In addition, transient receptor potential melastatin 4 (TRPM4), a non-selective cation channel, plays a significant role in endothelial dysfunction caused by various factors related to cardiovascular diseases. Despite this, the specific role and mechanisms of TRPM4 in atherosclerosis have not been fully understood. Methods: The protein and mRNA expressions of TRPM4, apoptosis - and inflammation-related factors were measured after PA treatment. The effect of TRPM4 knockout on the protein and mRNA expression of apoptosis and inflammation-related factors was detected. The changes of intracellular Ca2+, mitochondrial membrane potential, and reactive oxygen species were detected by Fluo-4 AM, JC-1, and DCFH-DA probes, respectively. To confirm the binding of miR-133a-3p to TRPM4, a dual luciferase reporter gene assay was conducted. Finally, the effects of miR-133a-3p and TRPM4 on intracellular Ca2+, mitochondrial membrane potential, and reactive oxygen species were examined. Results: Following PA treatment, the expression of TRPM4 increases, leading to calcium overload in endothelial cells. This calcium influx causes the assemblage of Bcl-2, resulting in the opening of mitochondrial calcium channels and mitochondrial damage, ultimately triggering apoptosis. Throughout this process, the mRNA and protein levels of IL-1ß, ICAM-1, and VCAM1 significantly increase. Database screenings and luciferase assays have shown that miR-133a-3p preferentially binds to the 3'UTR region of TRPM4 mRNA, suppressing TRPM4 expression. During PA-induced endothelial injury, miR-133a-3p is significantly decreased, but overexpression of miR-133a-3p can attenuate the progression of endothelial injury. On the other hand, overexpression of TRPM4 counteracts the aforementioned changes. Conclusion: TRPM4 participates in vascular endothelial injury caused by PA. Therefore, targeting TRPM4 or miR-133a-3p may offer a novel pharmacological approach to preventing endothelial injury.

15.
Org Biomol Chem ; 20(34): 6890-6896, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35972339

ABSTRACT

An efficient and convenient synthetic strategy for ruthenium(II)-catalyzed ortho-acylation of N-(2-pyridyl)-anilines using α-oxycarboxylic acids as acyl sources is described. The procedure can smoothly proceed under mild conditions, showing good functional group tolerance. Valuable ortho-acylated aniline products have been obtained with moderate to good yields. Furthermore, the reaction could be easily scaled up to the gram scale.


Subject(s)
Ruthenium , Acylation , Aniline Compounds , Catalysis , Molecular Structure
16.
J Org Chem ; 87(9): 5543-5555, 2022 05 06.
Article in English | MEDLINE | ID: mdl-35417153

ABSTRACT

Using N-methoxyamide reagents as an amide source, C-H amidation was realized at the ortho position of azine under the action of rhodium and boric acid. The method has mild reaction conditions, high atomic utilization, excellent yield, and wide adaptability to amidation reagents (both aromatic amides and fatty amides are applicable). Amide-substituted ketones can be obtained by a simple treatment and can be further transformed into bioactive substances. This provides a good supplement for the C-H bond amidation of aromatic rings.


Subject(s)
Rhodium , Amides/chemistry , Azo Compounds , Catalysis , Ketones/chemistry , Rhodium/chemistry
17.
Toxicol Lett ; 312: 98-108, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31054354

ABSTRACT

BACKGROUND/AIMS: To investigate the effect of Arsenic Trioxide (ATO) on endothelial cells injury and explore the role of transient receptor potential melastatin 4 channel (TRPM4) in ATO-induced endothelial injury. METHODS: qRT-PCR was used to examine the mRNA expression of TRPM4 in human umbilical vein endothelial cells (HUVECs). The protein levels were measured by Western blot and immunostaining. The MTT, TUNEL, and transwell assays were used to evaluate the cell viability, apoptosis, and migration, respectively. The ultrastructural changes were observed by scanning electron microscopy. The membrane potential, cytosolic [Na+]i, cytosolic [Ca2+]i and reactive oxygen species (ROS) levels were detected by fluorescent probes. Isometric tension of mesenteric artery was recorded by using a multiwire myograph system. RESULTS: ATO induced HUVEC cells injury, the significant upregulation of TRPM4 in this process was inhibited by 9-phenanthrol or siRNA. ATO-induced apoptosis and decrease in the cell viability/ migration were all partially reversed upon the treatment with 9-phenanthrol. Whereas, ATO-mediated increase in membrane potential, cytosolic [Na+]i, cytosolic [Ca2+]i and the ROS levels were also abolished by 9-phenanthrol or siRNA, suggesting that oxidative stress may be the potential mechanisms underlying ATO-induced endothelial injury. Additionally, 9-phenanthrol treatment prevented ATO-mediated impairment of acetylcholine-induced endothelium-dependent relaxations. CONCLUSION: TRPM4 is involved in endothelial injury induced by ATO and may be a promising therapeutic target for endothelial injury.


Subject(s)
Antineoplastic Agents/toxicity , Arsenic Trioxide/toxicity , Human Umbilical Vein Endothelial Cells/drug effects , TRPM Cation Channels/metabolism , Cell Survival/drug effects , Gene Expression Regulation/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Phenanthrenes/pharmacology , RNA Interference , RNA, Messenger/genetics , RNA, Messenger/metabolism , TRPM Cation Channels/genetics , Up-Regulation/drug effects
18.
Cell Commun Signal ; 16(1): 91, 2018 11 29.
Article in English | MEDLINE | ID: mdl-30497498

ABSTRACT

BACKGROUND: The link between cardiac diseases and cognitive deterioration has been accepted from the concept of "cardiogenic dementia", which was proposed in the late 1970s. However, the molecular mechanism is unclarified. METHODS: The two animal models used in this study were cardiac-specific overexpression of microRNA-1-2 transgenic (Tg) mice and a myocardial infarction mouse model generated by left coronary artery ligation (LCA). First, we observed the microRNA-1 (miR-1) level and synaptic vesicles (SV) distribution in the hippocampus using in situ hybridization and transmission electron microscopy (TEM) and evaluated the expression of vesicle exocytosis related proteins by western blotting. Second, we used dual luciferase reporter assay as well as antagonist and miRNA-masking techniques to identify the posttranscriptional regulatory effect of miR-1 on the Snap25 gene. Third, FM1-43 staining was performed to investigate the effect of miR-1 on synaptic vesicle exocytosis. Lastly, we used GW4869 to inhibit the biogenesis and secretion of exosomes to determine the transportation effect of exosomes for miR-1 from the heart to the brain. RESULTS: Compared with the levels in age-matched WT mice, miR-1 levels were increased in both the hearts and hippocampi of Tg mice, accompanied by the redistribution of SVs and the reduction in SV exocytosis-related protein SNAP-25 expression. In vitro studies showed that SNAP-25 protein expression was down- or upregulated by miR-1 overexpression or inhibition, respectively, however, unchanged by miRNA-masking the 3'UTR of the Snap25 gene. SV exocytosis was inhibited by miR-1 overexpression, which could be prevented by co-transfection with an anti-miR-1 oligonucleotide fragment (AMO-1). The knockdown of miR-1 by hippocampal stereotaxic injection of AMO-1 carried by a lentivirus vector (lenti-pre-AMO-1) led to the upregulation of SNAP-25 expression and prevented SV concentration in the synapses in the hippocampi of Tg mice. The application of GW4869 significantly reversed the increased miR-1 level in the blood and hippocampi as well as reduced the SNAP-25 protein levels in the hippocampi of both Tg and LCA mice. CONCLUSION: The overexpression of miR-1 in the heart attenuated SV exocytosis in the hippocampus by posttranscriptionally regulating SNAP-25 through the transportation of exosomes. This study contributes to the understanding of the relationship between cardiovascular disease and brain dysfunction.


Subject(s)
Exocytosis , Exosomes/metabolism , Gene Expression Regulation , MicroRNAs/genetics , Myocardium/metabolism , Synaptic Vesicles/metabolism , Synaptosomal-Associated Protein 25/metabolism , Animals , Base Sequence , Hippocampus/cytology , Humans , Male , Mice , Mice, Inbred C57BL , Myocardium/cytology , Synaptosomal-Associated Protein 25/genetics , Transcription, Genetic
19.
J Cell Mol Med ; 22(10): 4830-4839, 2018 10.
Article in English | MEDLINE | ID: mdl-30117672

ABSTRACT

MicroRNA-1 (miR-1) stands out as the most prominent microRNA (miRNA) in regulating cardiac function and has been perceived as a new potential therapeutic target. Lycium barbarum polysaccharides (LBPs) are major active constituents of the traditional Chinese medicine based on L. barbarum. The purpose of this study was to exploit the cardioprotective effect and molecular mechanism of LBPs underlying heart failure. We found that LBPs significantly reduced the expression of myocardial miR-1. LBPs improved the abnormal ECG and indexes of cardiac functions in P-V loop detection in transgenic (Tg) mice with miR-1 overexpression. LBPs recovered morphological changes in sarcomeric assembly, intercalated disc and gap junction. LBPs reversed the reductions of CaM and cMLCK, the proteins targeted by miR-1. Similar trends were also obtained in their downstream effectors including the phosphorylation of MLC2v and both total level and phosphorylation of CaMKII and cMyBP-C. Collectively, LBPs restored adverse structural remodelling and improved cardiac contractile dysfunction induced by overexpression of miR-1. One of the plausible mechanisms was that LBPs down-regulated miR-1 expression and consequently reversed miR-1-induced repression of target proteins relevant to myocardial contractibility. LBPs could serve as a new, at least a very useful adjunctive, candidate for prevention and therapy of heart failure.


Subject(s)
Cardiotonic Agents/administration & dosage , Drugs, Chinese Herbal/administration & dosage , MicroRNAs/genetics , Myocardial Contraction/genetics , Animals , Apoptosis/drug effects , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Cardiotonic Agents/chemistry , Carrier Proteins/genetics , Drugs, Chinese Herbal/chemistry , Gene Expression Regulation/genetics , Humans , Medicine, Chinese Traditional , Mice , Mice, Transgenic , Myocardial Contraction/drug effects , Phosphorylation/drug effects , Sarcomeres/drug effects , Sarcomeres/genetics , Sarcomeres/pathology
20.
Neural Netw ; 100: 25-38, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29432992

ABSTRACT

Parallel incremental learning is an effective approach for rapidly processing large scale data streams, where parallel and incremental learning are often treated as two separate problems and solved one after another. Incremental learning can be implemented by merging knowledge from incoming data and parallel learning can be performed by merging knowledge from simultaneous learners. We propose to simultaneously solve the two learning problems with a single process of knowledge merging, and we propose parallel incremental wESVM (weighted Extreme Support Vector Machine) to do so. Here, wESVM is reformulated such that knowledge from subsets of training data can be merged via simple matrix addition. As such, the proposed algorithm is able to conduct parallel incremental learning by merging knowledge over data slices arriving at each incremental stage. Both theoretical and experimental studies show the equivalence of the proposed algorithm to batch wESVM in terms of learning effectiveness. In particular, the algorithm demonstrates desired scalability and clear speed advantages to batch retraining.


Subject(s)
Supervised Machine Learning , Support Vector Machine , Algorithms , Knowledge , Learning , Supervised Machine Learning/trends , Support Vector Machine/trends
SELECTION OF CITATIONS
SEARCH DETAIL