Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 904: 166326, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37591395

ABSTRACT

Recent monitoring campaigns have revealed the presence of mixtures of pesticides and their transformation products (TP) in headwater streams situated within agricultural catchments. These observations were attributed to the use of various agrochemicals in surrounding regions. The aim of this work was to compare the application of chemical and ecotoxicological tools for assessing environmental quality in relation to pesticide and TP contamination. It was achieved by deploying these methodologies in two small lentic water bodies located at the top of two agricultural catchments, each characterized by distinct agricultural practices (ALT: organic, CHA: conventional). Additionally, the results make it possible to assess the impact of contamination on fish caged in situ. Pesticides and TP were measured in water using active and passive samplers and suspended solid particles. Eighteen biomarkers (innate immune responses, oxidative stress, biotransformation, neurotoxicity, genotoxicity, and endocrine disruption) were measured in Gasterosteus aculeatus encaged in situ. More contaminants were detected in CHA, totaling 25 compared to 14 in ALT. Despite the absence of pesticide application in the ALT watershed for the past 14 years, 7 contaminants were quantified in 100 % of the water samples. Among these contaminants, 6 were TPs (notably atrazine-2-hydroxy, present at a concentration exceeding 300 ng·L-1), and 1 was a current pesticide, prosulfocarb, whose mobility should prompt more caution and new regulations to protect adjacent ecosystems and crops. Regarding the integrated biomarker response (IBRv2), caged fish was similarly impacted in ALT and CHA. Variations in biomarker responses were highlighted depending on the site, but the results did not reveal whether one site is of better quality than the other. This outcome was likely attributed to the occurrence of contaminant mixtures in both sites. The main conclusions revealed that chemical and biological tools complement each other to better assess the environmental quality of wetlands such as ponds.


Subject(s)
Pesticides , Smegmamorpha , Water Pollutants, Chemical , Animals , Pesticides/toxicity , Pesticides/analysis , Ecosystem , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Agriculture , Smegmamorpha/metabolism , Fishes/metabolism , Biomarkers/metabolism , Water
2.
Environ Pollut ; 292(Pt B): 118403, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34699920

ABSTRACT

More than 20 years after the Water Framework Directive was adopted, there are still major gaps in the sanitary status of small rivers and waterbodies at the head of basins. These small streams supply water to a large number of wetlands that support a rich biodiversity. Many of these waterbodies are fishponds whose production is destined for human consumption or for the restocking of other aquatic environments. However, these ecosystems are exposed to contaminants, including pesticides and their transformation products. This work aims to provide information on the distribution, diversity, and concentrations of agricultural contaminants in abiotic and biotic compartments from a fishpond located at the head of watersheds. A total of 20 pesticides and 20 transformation products were analyzed by HPLC-ESI-MS/MS in water and sediment sampled monthly throughout a fish production cycle, and in three fish species at the beginning and end of the cycle. The highest mean concentrations were found for metazachlor-OXA (519.48 ± 56.52 ng.L-1) in water and benzamide (4.23 ± 0.17 ng g-1 dry wt.) in sediment. Up to 20 contaminants were detected per water sample and 26 per sediment sample. The transformation products of atrazine (banned in Europe since 2003 but still widely used in other parts of the world), flufenacet, imidacloprid (banned in France since 2018), metazachlor, and metolachlor were more concentrated than their parent compounds. Fewer contaminants were detected in fish and principally prosulfocarb accumulated in organisms during the cycle. Our work brings innovative data on the contamination of small waterbodies located at the head of a basin. The transformation products with the highest frequency of occurrence and concentrations should be prioritized for further environmental monitoring studies, and specific toxicity thresholds should be defined. Few contaminants were found in fish, but the results challenge the widely use of prosulfocarb.


Subject(s)
Pesticides , Water Pollutants, Chemical , Animals , Ecosystem , Environmental Monitoring , Humans , Pesticides/analysis , Rivers , Tandem Mass Spectrometry , Water , Water Pollutants, Chemical/analysis
3.
Chemosphere ; 284: 131292, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34198062

ABSTRACT

Monitoring pesticides in the environment requires the use of sensitive analytical methods. However, existing methods are generally not suitable for analyzing small organisms, as they require large matrix masses. This study explores the development of a miniaturized extraction protocol for the monitoring of small organisms, based on only 30 mg of matrix. The miniaturized sample preparation was developed using fish and macroinvertebrate matrices. It allowed the characterization of 41 pesticides and transformation products (log P from -1.9 to 4.8) in small samples with LC-MS/MS, based on European guidelines (European Commission DG-SANTE, 2019). Quantification limits ranged from 3 to 460 ng g-1 dry weight (dw) for fish and from 0.1 to 356 ng g-1 dw for invertebrates, with most below 60 ng g-1 dw. Extraction rates ranged from 70% to 120% for 35 molecules in fish. Recoveries ranged from 70% to 120% for 37 molecules in macroinvertebrates. Inter-day precision was below 30% for 32 molecules at quantification limits. The method was successfully applied to 17 fish and 19 macroinvertebrates collected from two ponds of the French region of Dombes in November and May 2018, respectively. Both sample matrices were nearly always contaminated with benzamide, imidacloprid-desnitro, and prosulfocarb at respective concentrations of 42-237, 3, and 30-165 ng g-1 dw in fish, and 62-438, 2-6, and 15-29 ng g-1 dw in macroinvertebrates. Results show that this method is an effective tool for characterizing polar pesticides in small biotic samples.


Subject(s)
Pesticide Residues , Pesticides , Animals , Chromatography, Liquid , Miniaturization , Pesticide Residues/analysis , Pesticides/analysis , Solid Phase Extraction , Tandem Mass Spectrometry
4.
Sci Total Environ ; 788: 147715, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34020090

ABSTRACT

In France, more than 90% of monitored watercourses are contaminated with pesticides. This high contamination level increases at the head of agricultural watersheds, where dilution capacities are low and transport from treated lands is direct. Ponds, numerous around headwater streams, could provide additional protection against pesticide pollution. Because of their long hydraulic residence time and large water volumes, they mitigate pesticide concentrations between upstream and downstream rivers. However, pesticide transformation products may also be responsible for the degradation of environments, owing to their presence at high concentrations and their persistence, but related data are scarce, particularly because of their high level of molecular diversity. We first reported on the state of water contamination in agricultural headwater streams, based on high frequency water sampling. Analysis of 67 molecules (HPLC-ESI-MS/MS) showed pesticides and pesticide transformation product mixtures of up to 29 different compounds in one sample. Regardless of the sampling location, transformation products represented at least 50% of the detected compounds. Then, we demonstrated the capacity of a pond to reduce contaminant concentrations in downstream rivers for 90% of the detected compounds. Upstream from this pond, environmental quality or ecotoxicological standards were exceeded during sampling, with pesticide and transformation product sum concentrations of up to 27 µg/L. Downstream from the study pond, few exceedances were observed, with a maximum total concentration of 2.2 µg/L, reflecting significant water quality improvement.

5.
J Chromatogr A ; 1628: 461447, 2020 Sep 27.
Article in English | MEDLINE | ID: mdl-32822986

ABSTRACT

Waterfowl populations have been decreasing in Europe for the last years and pollution appears to be one of the main factors. This study was conducted to develop a single sensitive and robust analytical method for the monitoring of 2 fungicides, 15 herbicides, 3 insecticides and 24 transformation products in wild bird eggs. One of the major challenges addressed was the characterization of chemicals with large logP range (from -1.9 to 4.8). A total of 11 different extraction parameters were tested in triplicate to optimize the extraction protocol, on generic parameters, buffer addition and use of clean-up steps. Quantification was based on matrix-match approach with hen eggs as reference matrix (34 analytes with r²>0.99). Particular attention was payed to matrix effects (-28% on average), quantification limits (0.5 to 25 ng.g-1 dry mass / 0.2 to 7.5 ng.g-1 fresh mass) and extraction yields (46 to 87% with 25 analytes up to 70%) to ensure the relevance of the method and its compatibility with ultra-trace analysis. It led to a simple solid/liquid low temperature partitioning extraction method followed by LC-MS/MS. Analysis of 29 field samples from 3 waterfowl species revealed that eggs were slightly contaminated with pesticides as only one egg presented a contamination (terbutryn, herbicide, 0.7 ng.g-1) and confirmed the relevance of the method.


Subject(s)
Chemistry Techniques, Analytical/methods , Chromatography, Liquid , Eggs/analysis , Pesticides/analysis , Tandem Mass Spectrometry , Animals , Birds , Environmental Pollutants/analysis , Europe , Pesticides/chemistry
6.
Environ Sci Pollut Res Int ; 27(6): 6228-6238, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31863385

ABSTRACT

Fishponds are man-made shallow water bodies that are still little studied because of their small size. They represent high value ecosystems, both environmentally (biodiversity hotspot) and economically (fish production). They can have a high place on the hydrographic network, so their influence on water quality is of first importance for rivers and water bodies located downstream and monitored under the Water Framework Directive. These small water bodies can be a source of contaminants during draining period or an efficient buffer for pesticides. We wanted to evaluate whether these ponds could also be a remediation tool against metals by following the annual evolution of upstream/downstream flows. Cadmium, copper, lead and zinc concentrations were quantified in the dissolved phase upstream and downstream of three ponds, each one having a specific agricultural environment (traditional or organic). Metal concentration was quantified in sediments and water. For the dissolved phase, the predictive non-effect concentration was often exceeded, suggesting an environmental risk. Results highlighted also greater quantity of metals at the downstream of the pond compared to the upstream, suggesting remobilization into the ponds or direct cross-sectional contributions from the watershed (e.g. runoff from crops) or even remobilization. Regarding sediments, minimal contamination was shown but a high mineralogical variability. No buffer effect of ponds, which could reduce the risk of acute or chronic toxicity, was detected.


Subject(s)
Environmental Monitoring , Metals/analysis , Water Pollutants, Chemical/analysis , Animals , Cross-Sectional Studies , Ecosystem , Geologic Sediments , Ponds , Rivers/chemistry
7.
Glob Chang Biol ; 25(5): 1591-1611, 2019 05.
Article in English | MEDLINE | ID: mdl-30628191

ABSTRACT

Climate change and human pressures are changing the global distribution and the extent of intermittent rivers and ephemeral streams (IRES), which comprise half of the global river network area. IRES are characterized by periods of flow cessation, during which channel substrates accumulate and undergo physico-chemical changes (preconditioning), and periods of flow resumption, when these substrates are rewetted and release pulses of dissolved nutrients and organic matter (OM). However, there are no estimates of the amounts and quality of leached substances, nor is there information on the underlying environmental constraints operating at the global scale. We experimentally simulated, under standard laboratory conditions, rewetting of leaves, riverbed sediments, and epilithic biofilms collected during the dry phase across 205 IRES from five major climate zones. We determined the amounts and qualitative characteristics of the leached nutrients and OM, and estimated their areal fluxes from riverbeds. In addition, we evaluated the variance in leachate characteristics in relation to selected environmental variables and substrate characteristics. We found that sediments, due to their large quantities within riverbeds, contribute most to the overall flux of dissolved substances during rewetting events (56%-98%), and that flux rates distinctly differ among climate zones. Dissolved organic carbon, phenolics, and nitrate contributed most to the areal fluxes. The largest amounts of leached substances were found in the continental climate zone, coinciding with the lowest potential bioavailability of the leached OM. The opposite pattern was found in the arid zone. Environmental variables expected to be modified under climate change (i.e. potential evapotranspiration, aridity, dry period duration, land use) were correlated with the amount of leached substances, with the strongest relationship found for sediments. These results show that the role of IRES should be accounted for in global biogeochemical cycles, especially because prevalence of IRES will increase due to increasing severity of drying events.


Subject(s)
Nutrients/analysis , Organic Chemicals/analysis , Rivers/chemistry , Biofilms/growth & development , Biological Availability , Climate , Climate Change , Geologic Sediments/chemistry , Nitrates/analysis , Plant Leaves/chemistry
8.
Environ Sci Pollut Res Int ; 25(2): 1998-2004, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29247410

ABSTRACT

The aim of this work was to investigate the effects of an anti-cyanobacterial ultrasound device (supplied by an electrical power of 15 W and emitting at 23 and 46 kHz) on the widespread freshwater amphipod species Gammarus roeseli. First, laboratory scale experiments in 8-L glass tanks showed that an ultrasound exposure of 2 h and 40 min was sufficient to produce 50% mortality, along with a 6.5 °C water temperature increase. Avoiding excessive heating by using a water-cooling and recirculation system permitted an exposure time of 29 h for the same mortality rate. A potential relationship between temperature's rise and amphipod mortality was hence highlighted. Moreover, the use of plastic mesh bag (0.5 mm mesh size) as a physical barrier has not shown any lethal effects of ultrasound exposure. Furthermore, the induction of GPx or GST activity as oxidative stress biomarkers was not observed. This could be explained by reduced ultrasound intensity inside the mesh bags. Thus, according to these results, the tested ultrasound system is not expected to be acutely harmful in the field.


Subject(s)
Amphipoda/growth & development , Cyanobacteria , Environmental Restoration and Remediation/instrumentation , Fresh Water/chemistry , Ultrasonic Waves/adverse effects , Animals , Biomarkers , Environmental Restoration and Remediation/methods , Oxidative Stress , Temperature
9.
Environ Sci Technol ; 51(13): 7658-7666, 2017 Jul 05.
Article in English | MEDLINE | ID: mdl-28558235

ABSTRACT

Perfluorooctane sulfonamidoethanol based phosphate diester (SAmPAP) is a potential perfluorooctanesulfonate (PFOS) precursor. To examine whether SAmPAP exposure would result in fish contamination by perfluoroalkyl and polyfluoroalkyl substances (PFASs), juvenile Eurasian perch were dietarily exposed to this compound (dosed group) or exposed to the same tank water but fed control feed (control group). SAmPAP and metabolites were monitored in the muscle, liver, and serum during the 45-day exposure phase and 35-day depuration phase. SAmPAP was only detected in the dosed group and the absorption efficiency (0.04-2.25%) was very low, possibly related to its low bioavailability in the gastrointestinal tract, steric constraints in crossing biological membranes, and clearing by enterohepatic circulation. Although SAmPAP was biotransformed and eliminated at a slow rate (t1/2 > 18 days), its biomagnification factor was low. The observed metabolites in fish were N-ethyl perfluorooctane sulfonamidoacetic acid, perfluorooctane sulfonamidoacetic acid, perfluorooctane sulfonamide, and PFOS. Considering that SAmPAP was the only source of PFASs in the tanks, the occurrence of metabolites indicates that SAmPAP could be biotransformed in fish and contribute to PFOS bioaccumulation. However, levels of metabolites were not significantly different in the dosed and control groups, indicating that metabolite excretion followed by re-exposure to these metabolites from water was the main uptake route.


Subject(s)
Fluorocarbons/pharmacokinetics , Perches , Water Pollutants, Chemical/pharmacokinetics , Alkanesulfonic Acids , Animals , Phosphates
10.
Environ Sci Pollut Res Int ; 24(6): 5669-5678, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28039630

ABSTRACT

The use of ultrasonication for cyanobacterial control in freshwater bodies has become increasingly popular during the last decades despite controversial efficiency on large scale application. Apart from that, little information is currently available regarding ultrasound toxicity potential towards non-target species. This work was designed to address this issue in the common carp using a low-power (7-9 W output) and dual-frequency (23 and 46 kHz) anti-cyanobacterial ultrasound device. Results showed that carps were unaffected by ultrasound exposure when exposed in floating cages in fish ponds over a 30-day period. The experiment duration was the main factor influencing all measured biological parameters in exposed and non-exposed organisms. Indeed, it was positively associated with an increase in fish condition factor. Cortisol level also tended to slightly increase over the number of days of experiment but its variation did not enable to sort out any ultrasound exposure-related stress. Moreover, an overall diminution along the experimental period of the expression level of a set of biomarkers could be reported, encompassing cellular antioxidant enzyme activities such as superoxide dismutase (SOD), glutathione peroxydase (GPx), catalase and glutathione S-transferase (GST), and lactate dehydrogenase activity. Subtle changes in these biomarkers were dependent of the type of enzyme activity and especially of the origin of fish (i.e., sampled pond) regardless of the presence of ultrasound equipment, reflecting thereby fish adaptation to local environmental conditions in each pond. In conclusion, this study does not provide indication that ultrasonication in the aforementioned conditions affects the welfare and physiological homeostasis of carps.


Subject(s)
Carps , Cyanobacteria , Ultrasonic Waves/adverse effects , Animals , Biomarkers , Catalase/metabolism , Glutathione , Glutathione Transferase , Liver/metabolism , Oxidation-Reduction , Oxidative Stress , Superoxide Dismutase , Water Pollutants, Chemical/toxicity
11.
Environ Sci Pollut Res Int ; 24(6): 5452-5468, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28028701

ABSTRACT

Extensive fish production systems in continental areas are often created by damming headwater streams. However, these lentic systems favour autochthonous organic matter production. As headwater stream functioning is essentially based on allochthonous organic matter (OM) supply, the presence of barrage fishponds on headwater streams might change the main food source for benthic communities. The goal of this study was thus to identify the effects of barrage fishponds on the functioning of headwater streams. To this end, we compared leaf litter breakdown (a key ecosystem function in headwater streams), their associated invertebrate communities and fungal biomass at sites upstream and downstream of five barrage fishponds in two dominant land use systems (three in forested catchments and two in agricultural catchments). We observed significant structural and functional differences between headwater stream ecosystems in agricultural catchments and those in forested catchments. Leaf litter decay was more rapid in forest streams, with a moderate, but not significant, increase in breakdown rate downstream from the barrage fishponds. In agricultural catchments, the trend was opposite with a 2-fold lower leaf litter breakdown rate at downstream sites compared to upstream sites. Breakdown rates observed at all sites were closely correlated with fungal biomass and shredder biomass. No effect of barrage fishponds were observed in this study concerning invertebrate community structure or functional feeding groups especially in agricultural landscapes. In forest streams, we observed a decrease in organic pollution (OP)-intolerant taxa at downstream sites that was correlated with an increase in OP-tolerant taxa. These results highlighted that the influence of barrage fishponds on headwater stream functioning is complex and land use dependent. It is therefore necessary to clearly understand the various mechanisms (competition for food resources, complementarities between autochthonous and allochthonous OM) that control ecosystem functioning in different contexts in order to optimize barrage fishpond management.


Subject(s)
Ecosystem , Forests , Fungi , Invertebrates , Agriculture , Animals , Aquaculture , Biodegradation, Environmental , Biomass , Fishes , Plant Leaves , Rivers
12.
Environ Sci Pollut Res Int ; 23(23): 23496-23510, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27614637

ABSTRACT

Mosses are useful, ubiquitous accumulation biomonitors and as such can be used for biomonitoring surveys. However, the biomonitoring of atmospheric pollution can be compromised in urban contexts if the targeted biomonitors are regularly disturbed, irregularly distributed, or are difficult to access. Here, we test the hypothesis that cemeteries are appropriate moss sampling sites for the evaluation of air pollution in urban areas. We sampled mosses growing on gravestones in 21 urban and peri-urban cemeteries in the Paris metropolitan area. We focused on Grimmia pulvinata (Hedwig) Smith, a species abundantly found in all studied cemeteries and very common in Europe. The concentration of Al, As, Br, Ca, Ce, Cl, Cr, Cu, Fe, K, Mn, Ni, V, P, Pb, Rb, S, Sr, Ti, and Zn was determined by a total reflection X-ray fluorescence technique coupled with a slurry sampling method (slurry-TXRF). This method avoids a digestion step, reduces the risk of sample contamination, and works even at low sample quantities. Elemental markers of road traffic indicated that the highest polluted cemeteries were located near the highly frequented Parisian ring road and under the influence of prevailing winds. The sites with the lowest pollution were found not only in the peri-urban cemeteries, adjoining forest or farming landscapes, but also in the large and relatively wooded cemeteries located in the center of Paris. Our results suggest that (1) slurry-TXRF might be successfully used with moss material, (2) G. pulvinata might be a good biomonitor of trace metals air pollution in urban context, and (3) cemetery moss sampling could be a useful complement for monitoring urban areas. Graphical abstract We tested the hypothesis that cemeteries are appropriate moss sampling sites for the evaluation of air pollution in urban areas. We sampled 110 moss cushions (Grimmia pulvinata) growing on gravestones in 21 urban and peri-urban cemeteries in the Paris metropolitan area. The concentration of 20 elements in mosses was determined by a total reflection X-ray fluorescence technique coupled with a slurry sampling method. Statistical analysis revealed that: - Urbanized Parisian areas crossed by traffic roads have the highest polluted cemeteries with a strong influence of main wind direction on the distribution of air pollutants - As expected, small cemeteries with low tree density were heavily polluted - Less obvious, large green spaces such as large cemeteries (Père Lachaise, Montmartre, Montparnasse) in the center of a dense metropolis like Paris present the same level of atmospheric trace metal pollution as cemeteries in less urbanized areas or nearing a very large forest. This suggests that even in densely urbanized areas, there is more spatial variability in pollution distribution than usually assumed and that large urban areas with low traffic and green filters such as trees are likely to intercept air pollutants.


Subject(s)
Air Pollutants/analysis , Bryopsida/chemistry , Metals, Heavy/analysis , Air Pollution , Cemeteries , Environmental Monitoring/methods , Paris , Spectrometry, X-Ray Emission , Trace Elements/analysis
13.
J Environ Manage ; 169: 261-71, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26773430

ABSTRACT

Constructed wetlands have been suggested as pesticide risk mitigation measures. Yet, in many agricultural areas, ponds or shallow lakes are already present and may contribute to the control of non-point source contamination by pesticides. In order to test this hypothesis, we investigated the influence of extensively managed barrage fishponds (n = 3) on the dissolved concentrations of 100 pesticides in headwater streams over the course of a year. Among the 100 pesticides, 50 different substances were detected upstream and 48 downstream. Highest measured concentration upstream was 26.5 µg/L (2-methyl-4-chlorophenoxyacetic acid, MCPA) and 5.19 µg/L (isoproturon) downstream. Fishponds were found to reduce peak exposure levels as high pesticide concentrations (defined here as ≥ 1 µg/L) generally decreased by more than 90% between upstream and downstream sampling sites. The measured concentrations in the investigated streams were compared to laboratory toxicity data for standard test organisms (algae, invertebrates and fish) using the toxic unit approach. When considering the threshold levels set by the European Union within the first tier risk assessment procedure for pesticide registration (commission regulation (EU) N° 546/2011), regulatory threshold exceedances were observed for 22 pesticides upstream from fishponds and for 9 pesticides downstream. Therefore, the investigated barrage fishponds contributed to the reduction of pesticide peak concentrations and potential risk of adverse effects for downstream ecosystems.


Subject(s)
Pesticides/analysis , Water Pollutants, Chemical/analysis , Animals , Aquaculture , Ecosystem , Environmental Monitoring , Fishes/metabolism , Invertebrates/metabolism , Pesticides/chemistry , Risk Assessment , Water Pollutants, Chemical/chemistry , Wetlands
14.
Environ Sci Pollut Res Int ; 23(1): 23-35, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26381791

ABSTRACT

Barrage fishponds may represent a significant surface water area in some French regions. Knowledge on their effect on water resources is therefore necessary for the development of appropriate water quality management plans at the regional scale. Although there is much information on the nutrient removal capacity of these water bodies, little attention has been paid to other agricultural contaminants such as pesticides. The present paper reports the results of a 1-year field monitoring of pesticide concentrations and water flows measured upstream and downstream from a fishpond in North East France to evaluate its capacity in reducing pesticide loads. Among the 42 active substances that had been applied on the fishpond's catchment, seven pesticides (five herbicides, two fungicides) were studied. The highest concentration in the inflow to the pond was 26.5 µg/L (MCPA), while the highest concentration in pond outflow was 0.54 µg/L (prosulfocarb). Removal rates of dissolved pesticides in the fishpond ranged from 0-8% (prosulfocarb) to 100% (clopyralid). Although not primarily designed for the treatment of diffuse sources of pesticides, the studied fishpond had the potential to do so.


Subject(s)
Environmental Restoration and Remediation , Pesticides , Ponds , Water Pollutants, Chemical , Agriculture , Animals , Environmental Monitoring , Environmental Pollution , Environmental Restoration and Remediation/methods , Fishes , France , Fungicides, Industrial , Herbicides , Pesticides/analysis , Water Movements , Water Pollutants, Chemical/analysis
15.
Environ Toxicol Chem ; 33(6): 1324-30, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24677303

ABSTRACT

The relative bioavailability of sediment-bound polychlorinated biphenyls (PCBs 138, 153, and 180) from a local contaminated site was examined using an in vivo carp model. Surface sediment from the PCB-contaminated site and spiked canola oil containing equivalent masses of PCBs were respectively incorporated in the sediment-dosed diets and oil-dosed diets at 3 dose levels resulting in 6 experimental diets. Juvenile carps (n = 90) were divided in 18 tanks (5 fish × 6 treatments × 3 tanks). Fish were fed the control diet during the adaptation period (15 d). Next, 1 fish was sampled in each tank and muscle tissues were combined in control groups. During the exposure period (15 d), the remaining fish were fed with 1 of the 6 experimental diets. At the end of the experiment, fish were sampled and muscle tissues were combined for each tank. The PCBs were monitored in feed and fish muscle. For both the contaminated sediment and spiked canola oil groups, concentrations of PCBs 138, 153, and 180 in muscle linearly increased with concentrations in food, with similar intercepts and slopes. In the present study, the sediment-bound PCBs were as bioavailable as those spiked into canola oil and fed to carp in a standard diet.


Subject(s)
Carps/metabolism , Geologic Sediments/chemistry , Polychlorinated Biphenyls/metabolism , Water Pollutants, Chemical/metabolism , Animals , Biological Availability , Ecotoxicology , Gastrointestinal Tract/metabolism , Polychlorinated Biphenyls/pharmacokinetics , Water Pollutants, Chemical/pharmacokinetics
16.
Chemosphere ; 91(4): 530-5, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23374295

ABSTRACT

Fish are often exposed to various molecules like pesticides. Some of these compounds get biomagnified within aquatic food web, inducing health hazards of consumers. However, behaviors of many pesticides are still unknown. This work aims to study the uptake and the elimination of some of them in muscle tissue of edible fish (azoxystrobin, clomazone, diflufenican, dimethachlor, carbendazim, iprodion, isoproturon, mesosulfuron-methyl, metazachlor, napropamid, quizalofop, and thifensulfuron-methyl). Two freshwater fish species (Perca fluviatilis and Cyprinus carpio) were exposed to a mixture of these 13 pesticides, via multi-contaminated pellets, and then, eliminated. Compounds were measured in food, water and muscle tissue using multi-residues methods. Kinetics, biomagnification factors (BMFs) and half-lives (t1/2) were estimated and they did not show a large difference between the species. Muscular BMFs ranged from 2 × 10(-6) (mesosulfuron-methyl in perch) to 1 × 10(-3) (isoproturon and napropamid in perch) and t1/2 ranged from 0.8 (mesosulfuron-methyl in perch) to 40.3d (napropamid in carp). BMFs were also modeled as a function of Kow value. All BMF values were explained by the model, except for diflufenican which had a BMF lower than that expected by our modeling work, probably due to an efficient metabolism. Results led to the conclusion that none of these chemicals would probably be biomagnified within aquatic food webs.


Subject(s)
Fishes/metabolism , Muscles/metabolism , Pesticides/metabolism , Water Pollutants, Chemical/metabolism , Animals , Diet , Environmental Monitoring , Food Chain , Fresh Water/chemistry , Half-Life
17.
Environ Sci Pollut Res Int ; 20(1): 117-25, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22961490

ABSTRACT

Residues of pesticides in fish farming productions from barrage ponds are seldom studied in spite of increasing health questionings and environmental concerns. The purpose of this study is to establish the pesticide contamination profiles of sediments and edible fish from five ponds in Northeastern France. Multi-residues method and liquid chromatography-tandem mass spectrometry analysis were used to quantify 13 pesticides (azoxystrobin, carbendazim, clomazone, diflufenican, dimethachlor, fluroxypyr, iprodion, isoproturon, mesosulfuron-methyl, metazachlor, napropamid, quizalofop and thifensulfuron-methyl). Ten sediments and 143 muscles samples were analysed, corresponding to two successive fishing campaigns (first fishing date and second fishing date (P2), about 1 year later) on five sites (noted C-0, C-25, C-45, C-75 and C-85 to express the increasing gradient of crop area). Isoproturon was present in all sediments samples (1.8-56.4 µg/kg dry weight). During P2 period, carbendazim was quantified in the fish of site C-0 (0.09 ± 0.02, 0.2 ± 0.1 and 0.17 ± 0.06 µg/kg wet weight (ww) for roach, carp and perch, respectively). Metazachlor was only quantified in perch of the site C-25 (0.13 ± 0.02 µg/kg ww). Concentrations of isoproturon were similar for the sites C-45 and C-75 with 0.4 ± 0.1 and 0.75 ± 0.06 µg/kg ww for carp and perch, respectively. Contamination of fish reflected generally concentrations in surroundings. Isoproturon was the most concentrated and its main source was water for perch while carp was exposed through both water and sediments, highlighting their life strategies in pond.


Subject(s)
Aquaculture , Fishes/metabolism , Pesticide Residues/analysis , Water Pollutants, Chemical/analysis , Acetamides/analysis , Acetamides/metabolism , Animals , Benzimidazoles/analysis , Benzimidazoles/metabolism , Carbamates/analysis , Carbamates/metabolism , Carps/metabolism , Environmental Monitoring , Food Contamination/statistics & numerical data , France , Geologic Sediments/chemistry , Perches/metabolism , Pesticide Residues/metabolism , Phenylurea Compounds/analysis , Phenylurea Compounds/metabolism , Ponds/chemistry , Sulfonylurea Compounds/analysis , Sulfonylurea Compounds/metabolism , Thiophenes/analysis , Thiophenes/metabolism , Water Pollutants, Chemical/metabolism , Water Pollution, Chemical/statistics & numerical data
18.
Environ Sci Pollut Res Int ; 20(1): 126-35, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22467231

ABSTRACT

PURPOSE: The quality of fish produced in ponds needs to be ensured. Indeed, pond is often strongly connected to an agricultural watershed, and pesticides are a main health and environmental issue of concern. In this context, the purpose of this study is to highlight the management practices which could impact the pesticide contamination profiles in edible fish and to give recommendations for better practices. METHODS: A principal component analysis, coupled to a hierarchical cluster analysis, was performed to evaluate temporal evolution of contamination profiles and to assess variability among fish species and among sites according to watershed characteristics. The explicative variables correspond to muscular concentrations of pesticides (azoxystrobin, clomazone, diflufenican, carbendazim, isoproturon, metazachlor, napropamid) in three species of fish (Perca fluviatilis, Cyprinus carpio and Rutilus rutilus), caught in five ponds during two sampling campaigns. Management data are added variables in order to discuss about parameters suspected to be implicated in the contamination profiles recorded. RESULTS: This work shows that high amounts of pesticides applied, short crop rotation durations and bare soil practices led to contamination of sediments and fish and were associated to a "bad" management of watershed. Breeding fish that had low masses and establishing the fishing period at the end of winter seemed to be "bad" management of pond. Aggravating topological parameters were big watershed coupled to small pond and high proportions of sand soils in the watershed. CONCLUSIONS: Reducing amounts of pesticide used (e.g. policy agency plans, farmer acceptance), favouring long-term rotations and inter-cultures, adapting pond creation and fish farming practices to watershed management and topography all could reduce pesticide levels in edible fish and contribute to a better sustainability of the extensive fish farming in pond.


Subject(s)
Aquaculture/methods , Fishes/metabolism , Pesticide Residues/analysis , Water Pollutants, Chemical/analysis , Agriculture/methods , Animals , Cluster Analysis , Conservation of Natural Resources/methods , Environmental Monitoring , Food Contamination/statistics & numerical data , France , Geologic Sediments/chemistry , Pesticide Residues/metabolism , Ponds/chemistry , Principal Component Analysis , Water Pollutants, Chemical/metabolism , Water Pollution, Chemical/statistics & numerical data
19.
Ecotoxicol Environ Saf ; 77: 35-44, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22071217

ABSTRACT

Organochlorine pesticides (HCB, HCH with α-, ß-, and γ isomers, heptachlor, cis-heptachlor epoxyde, trans-heptachlor epoxyde, endosulfan with α- and ß isomers, sulfate endosulfan, o,p'-DDT, p,p'-DDT, o,p'-DDE, p,p'-DDE, o,p'-DDD, p,p'-DDD, chlorothalonil, alachlor, aldrin, dieldrin, methoxychlor, oxychlordane, chlordane with α- and γ isomers, p,p'-dicofol and o,p'-dicofol) and indicators PCBs (IUPAC nos. 28, 52, 101, 118, 138, 153, and 180) were studied both in sediments and muscles of farmed fish species (Cyprinus carpio and Perca fluviatilis). Samples were collected from fish ponds located in the hydrographic basin of the Moselle River (Lorraine Region, France). OCPs and PCBs were present at low concentrations both in sediments and fish muscles. Concerning sediments, ∑DDTs revealed concentrations ranging from 0.2 to 2.30 ng g(-1) dw and ∑PCBs ranged from 0.3 to 3.5 ng g(-1) dw. Concerning fish muscles, the highest concentrations in OCPs were those of p,p'-DDE, with average concentrations of 0.57±0.44 ng g(-1) ww for carp and 0.58±0.29 ng g(-1) ww for perch. The contamination profiles proved to be different depending on the fish species. Indeed, HCH-isomers, HCB, and dieldrin were detected only for the carp and always at low concentrations. For example, the highest concentration of HCHs was observed for ß-HCH with a mean value of 0.64±0.15 ng g(-1) ww for carp. As for PCBs, the levels of ∑PCBs ranged from 0.3 to 6.4 ng g(-1) ww in carp muscles and from 0.90 to 5.60 ng g(-1) ww in perch muscles.


Subject(s)
Hydrocarbons, Chlorinated/toxicity , Pesticides/toxicity , Ponds/chemistry , Water Pollutants, Chemical/toxicity , Agriculture/methods , Agriculture/statistics & numerical data , Aldrin/toxicity , Animals , Aquaculture/methods , Aquaculture/statistics & numerical data , Carps , DDT/toxicity , Dichlorodiphenyl Dichloroethylene/toxicity , Dichlorodiphenyldichloroethane/toxicity , Endosulfan/analogs & derivatives , Endosulfan/toxicity , France , Heptachlor/toxicity , Hexachlorobenzene/toxicity , Hexachlorocyclohexane/toxicity , Mitotane/analogs & derivatives , Mitotane/toxicity , Perches , Polychlorinated Biphenyls/toxicity
20.
Environ Sci Pollut Res Int ; 19(7): 2802-12, 2011 Aug.
Article in English | MEDLINE | ID: mdl-22322291

ABSTRACT

PURPOSE: Fish farming in barrage pond is a rearing system commonly used worldwide. Obtaining good water quality is essential to improve sustainability of these ecosystems, both for health of fish consumers and environmental considerations. However, ponds are often located in agricultural landscape, but few study reports impact of pesticide pressure on these ecosystems. This study characterizes five sites in Northeastern France. This work establishes an initial framework for pesticide monitoring with the aim to improve understanding of the fate of pesticides in ponds. METHODS: This framework is based on surveys indicating managements and Geographical Information System (GIS) for five ponds and their watersheds (sites: C-0, C-25, C-45, C-75 and C-85) and completes with some analysis of a large spectrum of pesticide residues in surface waters. RESULTS: Watersheds show a gradient of crop proportion ranging from 0% to 82% of the watershed area, mainly rapeseed, wheat, barley and maize. Ponds were representative of local Northeastern France management. Many pesticides, and also nutrients, were measured in water with concentrations varying between sites and seasons. The sum of quantified molecules ranged from 0.17 µg/l for site C-0 (March) to 8.81 µg/l for site C-25 (October). Concentrations of metaldehyde, quinmerac, isoproturon and bentazon were sometimes above 1 µg/l. CONCLUSIONS: There is a strong connection between pond and watershed, due to water supply throughout the fish production cycle. Sites with small pond/big watershed are the most exposed to acute contamination a few days after spraying because water discharges are not diluted.


Subject(s)
Aquaculture , Fishes , Pesticides/chemistry , Water Pollutants, Chemical/chemistry , Animals , Environmental Monitoring , Hydrogen-Ion Concentration , Nitrates/chemistry , Phosphates/chemistry , Temperature , Time Factors , Water/chemistry , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL
...