Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
2.
EMBO J ; 42(5): e112351, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36762436

ABSTRACT

Human cytomegalovirus (CMV) is a ubiquitously distributed pathogen whose rodent counterparts such as mouse and rat CMV serve as common infection models. Here, we conducted global proteome profiling of rat CMV-infected cells and uncovered a pronounced loss of the transcription factor STAT2, which is crucial for antiviral interferon signalling. Via deletion mutagenesis, we found that the viral protein E27 is required for CMV-induced STAT2 depletion. Cellular and in vitro analyses showed that E27 exploits host-cell Cullin4-RING ubiquitin ligase (CRL4) complexes to induce poly-ubiquitylation and proteasomal degradation of STAT2. Cryo-electron microscopy revealed how E27 mimics molecular surface properties of cellular CRL4 substrate receptors called DCAFs (DDB1- and Cullin4-associated factors), thereby displacing them from the catalytic core of CRL4. Moreover, structural analyses showed that E27 recruits STAT2 through a bipartite binding interface, which partially overlaps with the IRF9 binding site. Structure-based mutations in M27, the murine CMV homologue of E27, impair the interferon-suppressing capacity and virus replication in mouse models, supporting the conserved importance of DCAF mimicry for CMV immune evasion.


Subject(s)
Cytomegalovirus Infections , Muromegalovirus , Animals , Humans , Mice , Rats , Cryoelectron Microscopy , Cytomegalovirus Infections/genetics , Interferon-Stimulated Gene Factor 3, gamma Subunit/metabolism , Interferons/metabolism , STAT2 Transcription Factor/genetics , STAT2 Transcription Factor/metabolism , Ubiquitin-Protein Ligases/metabolism , Receptors, Interleukin-17/metabolism
3.
J Am Chem Soc ; 144(40): 18688-18699, 2022 10 12.
Article in English | MEDLINE | ID: mdl-36170674

ABSTRACT

Targeted protein degradation induced by heterobifunctional compounds and molecular glues presents an exciting avenue for chemical probe and drug discovery. To date, small-molecule ligands have been discovered for only a limited number of E3 ligases, which is an important limiting factor for realizing the full potential of targeted protein degradation. We report herein the discovery by chemical proteomics of azetidine acrylamides that stereoselectively and site-specifically react with a cysteine (C1113) in the E3 ligase substrate receptor DCAF1. We demonstrate that the azetidine acrylamide ligands for DCAF1 can be developed into electrophilic proteolysis-targeting chimeras (PROTACs) that mediated targeted protein degradation in human cells. We show that this process is stereoselective and does not occur in cells expressing a C1113A mutant of DCAF1. Mechanistic studies indicate that only low fractional engagement of DCAF1 is required to support protein degradation by electrophilic PROTACs. These findings, taken together, demonstrate how the chemical proteomic analysis of stereochemically defined electrophilic compound sets can uncover ligandable sites on E3 ligases that support targeted protein degradation.


Subject(s)
Azetidines , Chimera , Acrylamide , Cysteine/metabolism , Humans , Intercellular Signaling Peptides and Proteins , Ligands , Proteolysis , Proteomics , Ubiquitin-Protein Ligases/metabolism
4.
ACS Omega ; 6(43): 28903-28911, 2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34746582

ABSTRACT

During DNA replication, primases synthesize oligonucleotide primers on single-stranded template DNA, which are then extended by DNA polymerases to synthesize a complementary DNA strand. Primase RepB' of plasmid RSF1010 initiates DNA replication on two 40 nucleotide-long inverted repeats, termed ssiA and ssiB, within the oriV of RSF1010. RepB' consists of a catalytic domain and a helix bundle domain, which are connected by long α-helix 6 and an unstructured linker. Previous work has demonstrated that RepB' requires both domains for the initiation of dsDNA synthesis in DNA replication assays. However, the precise functions of these two domains in primer synthesis have been unknown. Here, we report that both domains of RepB' are required to synthesize a 10-12 nucleotide-long DNA primer, whereas the isolated domains are inactive. Mutational analysis of the catalytic domain indicates that the solvent-exposed W50 plays a critical role in resolving hairpin structures formed by ssiA and ssiB. Three structurally conserved aspartates (D77, D78, and D134) of RepB' catalyze the nucleotidyl transfer reaction. Mutations on the helix bundle domain are identified that either reduce the primer length to a dinucleotide (R285A) or abolish the primer synthesis (D238A), indicating that the helix bundle domain is required to form and extend the initial dinucleotide synthesized by the catalytic domain.

5.
PLoS Pathog ; 17(8): e1009775, 2021 08.
Article in English | MEDLINE | ID: mdl-34339457

ABSTRACT

Viruses have evolved means to manipulate the host's ubiquitin-proteasome system, in order to down-regulate antiviral host factors. The Vpx/Vpr family of lentiviral accessory proteins usurp the substrate receptor DCAF1 of host Cullin4-RING ligases (CRL4), a family of modular ubiquitin ligases involved in DNA replication, DNA repair and cell cycle regulation. CRL4DCAF1 specificity modulation by Vpx and Vpr from certain simian immunodeficiency viruses (SIV) leads to recruitment, poly-ubiquitylation and subsequent proteasomal degradation of the host restriction factor SAMHD1, resulting in enhanced virus replication in differentiated cells. To unravel the mechanism of SIV Vpr-induced SAMHD1 ubiquitylation, we conducted integrative biochemical and structural analyses of the Vpr protein from SIVs infecting Cercopithecus cephus (SIVmus). X-ray crystallography reveals commonalities between SIVmus Vpr and other members of the Vpx/Vpr family with regard to DCAF1 interaction, while cryo-electron microscopy and cross-linking mass spectrometry highlight a divergent molecular mechanism of SAMHD1 recruitment. In addition, these studies demonstrate how SIVmus Vpr exploits the dynamic architecture of the multi-subunit CRL4DCAF1 assembly to optimise SAMHD1 ubiquitylation. Together, the present work provides detailed molecular insight into variability and species-specificity of the evolutionary arms race between host SAMHD1 restriction and lentiviral counteraction through Vpx/Vpr proteins.


Subject(s)
Cullin Proteins/chemistry , Gene Products, vpr/metabolism , Proteasome Endopeptidase Complex/chemistry , SAM Domain and HD Domain-Containing Protein 1/chemistry , Ubiquitination , Virus Replication , Amino Acid Sequence , Animals , Cryoelectron Microscopy , Cullin Proteins/metabolism , Gene Products, vpr/genetics , NEDD8 Protein/chemistry , NEDD8 Protein/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Binding , SAM Domain and HD Domain-Containing Protein 1/metabolism , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/physiology , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/metabolism
6.
Structure ; 27(12): 1830-1841.e3, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31648844

ABSTRACT

The hexameric ring structure of the type II AAA+ ATPases is considered as stable and permanent. Recently, the UBX domain-containing cofactors Arabidopsis thaliana PUX1 and human alveolar soft part sarcoma locus (ASPL) were reported to bind and disassemble the cognate AAA+ ATPases AtCDC48 and human p97. Here, we present two crystal structures related to these complexes: a truncated AtCDC48 (AtCDC48-ND1) and a hybrid complex containing human p97-ND1 and the UBX domain of plant PUX1 (p97-ND1:PUX1-UBX). These structures reveal close similarity between the human and plant AAA+ ATPases, but also highlight differences between disassembling and non-disassembling AAA+ ATPase cofactors. Based on an AtCDC48 disassembly assay with PUX1 and known crystal structures of the p97-bound human cofactor ASPL, we propose a general ATPase disassembly model. Thus, our structural and biophysical investigations provide detailed insight into the mechanism of AAA+ ATPase disassembly by UBX domain cofactors and suggest a general mode of regulating the cellular activity of these molecular machines.


Subject(s)
ATPases Associated with Diverse Cellular Activities/chemistry , Adenosine Triphosphatases/chemistry , Arabidopsis Proteins/chemistry , Arabidopsis/genetics , Carrier Proteins/chemistry , Cell Cycle Proteins/chemistry , Coenzymes/chemistry , Intracellular Signaling Peptides and Proteins/chemistry , Nuclear Proteins/chemistry , ATPases Associated with Diverse Cellular Activities/genetics , ATPases Associated with Diverse Cellular Activities/metabolism , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Amino Acid Motifs , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Binding Sites , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cloning, Molecular , Coenzymes/genetics , Coenzymes/metabolism , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Models, Molecular , Mutation , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Multimerization , Protein Stability , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Structural Homology, Protein , Substrate Specificity
7.
Proc Natl Acad Sci U S A ; 106(19): 7810-5, 2009 May 12.
Article in English | MEDLINE | ID: mdl-19416864

ABSTRACT

For the initiation of DNA replication, dsDNA is unwound by helicases. Primases then recognize specific sequences on the template DNA strands and synthesize complementary oligonucleotide primers that are elongated by DNA polymerases in leading- and lagging-strand mode. The bacterial plasmid RSF1010 provides a model for the initiation of DNA replication, because it encodes the smallest known primase RepB' (35.9 kDa), features only 1 single-stranded primase initiation site on each strand (ssiA and ssiB, each 40 nt long with 5'- and 3'-terminal 6 and 13 single-stranded nucleotides, respectively, and nucleotides 7-27 forming a hairpin), and is replicated exclusively in leading strand mode. We present the crystal structure of full-length dumbbell-shaped RepB' consisting of an N-terminal catalytic domain separated by a long alpha-helix and tether from the C-terminal helix-bundle domain and the structure of the catalytic domain in a specific complex with the 6 5'-terminal single-stranded nucleotides and the C7-G27 base pair of ssiA, its single-stranded 3'-terminus being deleted. The catalytic domains of RepB' and the archaeal/eukaryotic family of Pri-type primases share a common fold with conserved catalytic amino acids, but RepB' lacks the zinc-binding motif typical of the Pri-type primases. According to complementation studies the catalytic domain shows primase activity only in the presence of the helix-bundle domain. Primases that are highly homologous to RepB' are encoded by broad-host-range IncQ and IncQ-like plasmids that share primase initiation sites ssiA and ssiB and high sequence identity with RSF1010.


Subject(s)
DNA Helicases/chemistry , Plasmids/metabolism , Amino Acid Motifs , Base Sequence , Catalytic Domain , Crystallography, X-Ray/methods , DNA Helicases/metabolism , DNA Primase/chemistry , DNA Primers/chemistry , DNA Replication , Models, Biological , Molecular Conformation , Molecular Sequence Data , Mutagenesis , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...