Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 14: 1147455, 2023.
Article in English | MEDLINE | ID: mdl-37065151

ABSTRACT

Introduction: Kidney transplant recipients (KTRs) are at high risk of severe COVID-19, even when they are fully vaccinated. Additional booster vaccinations or passive immunization with prophylactic monoclonal antibodies are recommended to increase their protection against severe COVID-19. Methods: Here, we describe the neutralization of SARS-CoV-2 Delta, Omicron BA.1, BA.2, BA.4, and BA.5 variants, firstly by 39 serum samples from vaccinated KTRs exhibiting anti-spike antibody concentrations ≥264 binding antibody units (BAU)/mL and, secondly, by tixagevimab/cilgavimab. Results: No neutralization was observed for 18% of the KTRs, while serum from only 46% of patients could neutralize the five variants. Cross-neutralization of the Delta and Omicron variants occurred for 65-87% of sera samples. The anti-spike antibody concentration correlated with neutralization activity for all the variants. The neutralization titers against the Delta variant were higher in vaccinated KTRs who had previously presented with COVID-19, compared to those KTRs who had only been vaccinated. Breakthrough infections occurred in 39% of the KTRs after the study. Tixagevimab/cilgavimab poorly neutralizes Omicron variants, particularly BA.5, and does not neutralize BQ.1, which is currently the most prevalent strain. Discussion: As a result, sera from seropositive vaccinated KTRs had poor neutralization of the successive Omicron variants. Several Omicron variants are able to escape tixagevimab/cilgavimab.

2.
Int J Mol Sci ; 23(24)2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36555121

ABSTRACT

Experimental findings for SARS-CoV-2 related to the glycan biochemistry of coronaviruses indicate that attachments from spike protein to glycoconjugates on the surfaces of red blood cells (RBCs), other blood cells and endothelial cells are key to the infectivity and morbidity of COVID-19. To provide further insight into these glycan attachments and their potential clinical relevance, the classic hemagglutination (HA) assay was applied using spike protein from the Wuhan, Alpha, Delta and Omicron B.1.1.529 lineages of SARS-CoV-2 mixed with human RBCs. The electrostatic potential of the central region of spike protein from these four lineages was studied through molecular modeling simulations. Inhibition of spike protein-induced HA was tested using the macrocyclic lactone ivermectin (IVM), which is indicated to bind strongly to SARS-CoV-2 spike protein glycan sites. The results of these experiments were, first, that spike protein from these four lineages of SARS-CoV-2 induced HA. Omicron induced HA at a significantly lower threshold concentration of spike protein than the three prior lineages and was much more electropositive on its central spike protein region. IVM blocked HA when added to RBCs prior to spike protein and reversed HA when added afterward. These results validate and extend prior findings on the role of glycan bindings of viral spike protein in COVID-19. They furthermore suggest therapeutic options using competitive glycan-binding agents such as IVM and may help elucidate rare serious adverse effects (AEs) associated with COVID-19 mRNA vaccines, which use spike protein as the generated antigen.


Subject(s)
COVID-19 Vaccines , COVID-19 , Hemagglutination , Spike Glycoprotein, Coronavirus , Humans , Antibodies, Viral , Endothelial Cells , SARS-CoV-2 , COVID-19 Vaccines/adverse effects
3.
Adv Virol ; 2022: 5995775, 2022.
Article in English | MEDLINE | ID: mdl-35756712

ABSTRACT

Ionised active water S-100® has been proposed as an original solution for use in dermocosmetics and for the treatment of wounds such as burns and atopic dermatitis. Among the mechanisms of action that are not completely understood, an antimicrobial activity would appear to be important. In the context of the COVID-19 pandemic, we assessed the inactivating efficacy of this solution on SARS-CoV-2 based on the recommendations of the NF-EN-14476+A2 standard. The tests carried out demonstrated that ionised active water S-100® 40% has a virucidal activity on SARS-CoV-2 which is at least 3.1 log after a contact time of 30 seconds and 3.5 log after two minutes at 20°C under clean conditions. Assays were also performed at 4°C and 37°C, and the results obtained are identical to those obtained at 20°C. This demonstration of the virucidal effect of ionised water against SARS-CoV-2 paves the way for the development of usage as an alternative disinfectant in SARS-CoV-2 control.

5.
Viruses ; 13(11)2021 10 28.
Article in English | MEDLINE | ID: mdl-34834983

ABSTRACT

BACKGROUND: Since the beginning of the COVID-19 pandemic, several SARS-CoV-2 variants have sequentially emerged. In France, most cases were due to spike D641G-harbouring viruses that descended initially from the Wuhan strain, then by the variant of B.1.160 lineage we called Marseille-4 since the summer of 2020, which was followed by the Alpha and Beta variants in early 2021, then the Delta variant currently. METHODS: We determined the neutralising antibody (nAb) titres in sera from convalescent individuals previously infected by these four major local variants and from vaccine recipients to the original Wuhan strain and nine variants, including two recent circulating Delta isolates. RESULTS: The results show high inter-individual heterogeneity in nAbs, especially according to the variant tested. The major variations among nAbs are based on the genotype responsible for the infection. Patients previously infected with the beta and B.1.160 variants had the lowest nAb titres. We show that this heterogeneity is well explained by spike protein mutants modelling using in silico approaches. The highest titres were observed in individuals vaccinated with the Pfizer/BioNTech COVID-19 vaccine, even against the delta variant. CONCLUSIONS: Immunity acquired naturally after infection is highly dependent on the infecting variant, and, unexpectedly, mRNA-based vaccine efficacy was shown to be often better than natural immunity in eliciting neutralising antibodies.


Subject(s)
Antibodies, Neutralizing/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Antibodies, Viral , COVID-19 Serological Testing , Chlorocebus aethiops , Cohort Studies , Female , France , Genotype , Humans , Male , Middle Aged , Models, Molecular , Mutation , Spike Glycoprotein, Coronavirus/chemistry , Vaccine Efficacy/statistics & numerical data , Vero Cells , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...