Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Healthcare (Basel) ; 7(2)2019 May 17.
Article in English | MEDLINE | ID: mdl-31108976

ABSTRACT

BACKGROUND: Morgellons disease (MD) is a dermopathy that is associated with tick-borne illness. It is characterized by spontaneously developing skin lesions containing embedded or projecting filaments, and patients may also experience symptoms resembling those of Lyme disease (LD) including musculoskeletal, neurological and cardiovascular manifestations. Various species of Borrelia and co-infecting pathogens have been detected in body fluids and tissue specimens from MD patients. We sought to investigate the coexistence of Borrelia burgdorferi (Bb) and Helicobacter pylori (Hp) in skin specimens from MD subjects, and to characterize their association with mixed amyloid biofilm development. METHODS: Testing for Bb and Hp was performed on dermatological specimens from 14 MD patients using tissue culture, immunohistochemical (IHC) staining, polymerase chain reaction (PCR) testing, fluorescent in situ hybridization (FISH) and confocal microscopy. Markers for amyloid and biofilm formation were investigated using histochemical and IHC staining. RESULTS: Bb and Hp were detected in dermatological tissue taken from MD lesions. Bb and Hp tended to co-localize in foci within the epithelial tissue. Skin sections exhibiting foci of co-infecting Bb and Hp contained amyloid markers including ß-amyloid protein, thioflavin and phosphorylated tau. The biofilm marker alginate was also found in the sections. CONCLUSIONS: Mixed Bb and Hp biofilms containing ß-amyloid and phosphorylated tau may play a role in the evolution of MD.

2.
Free Radic Biol Med ; 89: 369-78, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26431905

ABSTRACT

Fluoride is an effective caries prophylactic, but at high doses can also be an environmental health hazard. Acute or chronic exposure to high fluoride doses can result in dental enamel and skeletal and soft tissue fluorosis. Dental fluorosis is manifested as mottled, discolored, porous enamel that is susceptible to dental caries. Fluoride induces cell stress, including endoplasmic reticulum stress and oxidative stress, which leads to impairment of ameloblasts responsible for dental enamel formation. Recently we reported that fluoride activates SIRT1 and autophagy as an adaptive response to protect cells from stress. However, it still remains unclear how SIRT1/autophagy is regulated in dental fluorosis. In this study, we demonstrate that fluoride exposure generates reactive oxygen species (ROS) and the resulting oxidative damage is counteracted by SIRT1/autophagy induction through c-Jun N-terminal kinase (JNK) signaling in ameloblasts. In the mouse-ameloblast-derived cell line LS8, fluoride induced ROS, mitochondrial damage including cytochrome-c release, up-regulation of UCP2, attenuation of ATP synthesis, and H2AX phosphorylation (γH2AX), which is a marker of DNA damage. We evaluated the effects of the ROS inhibitor N-acetylcysteine (NAC) and the JNK inhibitor SP600125 on fluoride-induced SIRT1/autophagy activation. NAC decreased fluoride-induced ROS generation and attenuated JNK and c-Jun phosphorylation. NAC decreased SIRT1 phosphorylation and formation of the autophagy marker LC3II, which resulted in an increase in the apoptosis mediators γH2AX and cleaved/activated caspase-3. SP600125 attenuated fluoride-induced SIRT1 phosphorylation, indicating that fluoride activates SIRT1/autophagy via the ROS-mediated JNK pathway. In enamel organs from rats or mice treated with 50, 100, or 125 ppm fluoride for 6 weeks, cytochrome-c release and the DNA damage markers 8-oxoguanine, p-ATM, and γH2AX were increased compared to those in controls (0 ppm fluoride). These results suggest that fluoride-induced ROS generation causes mitochondrial damage and DNA damage, which may lead to impairment of ameloblast function. To counteract this impairment, SIRT1/autophagy is induced via JNK signaling to protect cells/ameloblasts from fluoride-induced oxidative damage that may cause dental fluorosis.


Subject(s)
Autophagy , Fluorides/pharmacology , JNK Mitogen-Activated Protein Kinases/metabolism , Oxidative Stress/drug effects , Phosphates/pharmacology , Reactive Oxygen Species/metabolism , Sirtuin 1/metabolism , Animals , Apoptosis/drug effects , Blotting, Western , Cell Proliferation/drug effects , Cells, Cultured , DNA Damage/drug effects , Fluorescent Antibody Technique , Immunoenzyme Techniques , JNK Mitogen-Activated Protein Kinases/genetics , Male , Mice , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/pathology , Phosphorylation , RNA, Messenger/genetics , Rats , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Sirtuin 1/genetics
3.
BMC Dermatol ; 15: 1, 2015 Feb 12.
Article in English | MEDLINE | ID: mdl-25879673

ABSTRACT

BACKGROUND: Morgellons disease (MD) is a complex skin disorder characterized by ulcerating lesions that have protruding or embedded filaments. Many clinicians refer to this condition as delusional parasitosis or delusional infestation and consider the filaments to be introduced textile fibers. In contrast, recent studies indicate that MD is a true somatic illness associated with tickborne infection, that the filaments are keratin and collagen in composition and that they result from proliferation and activation of keratinocytes and fibroblasts in the skin. Previously, spirochetes have been detected in the dermatological specimens from four MD patients, thus providing evidence of an infectious process. METHODS & RESULTS: Based on culture, histology, immunohistochemistry, electron microscopy and molecular testing, we present corroborating evidence of spirochetal infection in a larger group of 25 MD patients. Irrespective of Lyme serological reactivity, all patients in our study group demonstrated histological evidence of epithelial spirochetal infection. Strength of evidence based on other testing varied among patients. Spirochetes identified as Borrelia strains by polymerase chain reaction (PCR) and/or in-situ DNA hybridization were detected in 24/25 of our study patients. Skin cultures containing Borrelia spirochetes were obtained from four patients, thus demonstrating that the organisms present in dermatological specimens were viable. Spirochetes identified by PCR as Borrelia burgdorferi were cultured from blood in seven patients and from vaginal secretions in three patients, demonstrating systemic infection. Based on these observations, a clinical classification system for MD is proposed. CONCLUSIONS: Our study using multiple detection methods confirms that MD is a true somatic illness associated with Borrelia spirochetes that cause Lyme disease. Further studies are needed to determine the optimal treatment for this spirochete-associated dermopathy.


Subject(s)
Borrelia burgdorferi/isolation & purification , Lyme Disease/complications , Lyme Disease/microbiology , Morgellons Disease/complications , Morgellons Disease/microbiology , Adult , Aged , Aged, 80 and over , Borrelia burgdorferi/genetics , DNA, Bacterial/analysis , Female , Fluorescent Antibody Technique , Humans , In Situ Hybridization , Lyme Disease/pathology , Male , Microscopy, Electron , Middle Aged , Morgellons Disease/pathology , Polymerase Chain Reaction , Skin/microbiology , Skin/pathology
4.
F1000Res ; 3: 309, 2014.
Article in English | MEDLINE | ID: mdl-28690828

ABSTRACT

Background: Recent reports indicate that more than 300,000 cases of Lyme disease are diagnosed yearly in the USA. Preliminary clinical, epidemiological and immunological studies suggest that infection with the Lyme disease spirochete Borrelia burgdorferi (Bb) could be transferred from person to person via intimate human contact without a tick vector. Detecting viable Borrelia spirochetes in vaginal and seminal secretions would provide evidence to support this hypothesis. Methods: Patients with and without a history of Lyme disease were selected for the study after informed consent was obtained. Serological testing for Bb was performed on all subjects. Semen or vaginal secretions were inoculated into BSK-H medium and cultured for four weeks. Examination of genital cultures and culture concentrates for the presence of spirochetes was performed using light and darkfield microscopy, and spirochete concentrates were subjected to Dieterle silver staining, anti-Bb immunohistochemical staining, molecular hybridization and PCR analysis for further characterization. Immunohistochemical and molecular testing was performed in three independent laboratories. Positive and negative controls were included in all experiments. Results: Control subjects who were asymptomatic and seronegative for Bb had no detectable spirochetes in genital secretions by PCR analysis. In contrast, spirochetes were observed in cultures of genital secretions from 11 of 13 subjects diagnosed with Lyme disease, and motile spirochetes were detected in genital culture concentrates from 12 of 13 Lyme disease patients using light and darkfield microscopy. Morphological features of spirochetes were confirmed by Dieterle silver staining and immunohistochemical staining of culture concentrates. Molecular hybridization and PCR testing confirmed that the spirochetes isolated from semen and vaginal secretions were strains of Borrelia, and all cultures were negative for treponemal spirochetes. PCR sequencing of cultured spirochetes from three couples having unprotected sex indicated that two couples had identical strains of Bb sensu stricto in their semen and vaginal secretions, while the third couple had identical strains of B. hermsii detected in their genital secretions. Conclusions: The culture of viable Borrelia spirochetes in genital secretions suggests that Lyme disease could be transmitted by intimate contact from person to person.

SELECTION OF CITATIONS
SEARCH DETAIL