Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
PLoS One ; 19(2): e0296688, 2024.
Article in English | MEDLINE | ID: mdl-38335166

ABSTRACT

Male orangutans (Pongo spp.) exhibit bimaturism, an alternative reproductive tactic, with flanged and unflanged males displaying two distinct morphological and behavioral phenotypes. Flanged males are larger than unflanged males and display secondary sexual characteristics which unflanged males lack. The evolutionary explanation for alternative reproductive tactics in orangutans remains unclear because orangutan paternity studies to date have been from sites with ex-captive orangutans, provisioning via feeding stations and veterinary care, or that lack data on the identity of mothers. Here we demonstrate, using the first long-term paternity data from a site free of these limitations, that alternative reproductive tactics in orangutans are condition-dependent, not frequency-dependent. We found higher reproductive success by flanged males than by unflanged males, a pattern consistent with other Bornean orangutan (Pongo pygmaeus) paternity studies. Previous paternity studies disagree on the degree of male reproductive skew, but we found low reproductive skew among flanged males. We compare our findings and previous paternity studies from both Bornean and Sumatran orangutans (Pongo abelii) to understand why these differences exist, examining the possible roles of species differences, ecology, and human intervention. Additionally, we use long-term behavioral data to demonstrate that while flanged males can displace unflanged males in association with females, flanged males are unable to keep other males from associating with a female, and thus they are unable to completely mate guard females. Our results demonstrate that alternative reproductive tactics in Bornean orangutans are condition-dependent, supporting the understanding that the flanged male morph is indicative of good condition. Despite intense male-male competition and direct sexual coercion by males, female mate choice is effective in determining reproductive outcomes in this population of wild orangutans.


Subject(s)
Pongo abelii , Pongo pygmaeus , Humans , Female , Male , Animals , Biological Evolution , Reproduction , Ecology
2.
Sci Data ; 9(1): 485, 2022 08 12.
Article in English | MEDLINE | ID: mdl-35961988

ABSTRACT

The Sumatran orang-utan (Pongo abelii) reference genome was first published in 2011, in conjunction with ten re-sequenced genomes from unrelated wild-caught individuals. Together, these published data have been utilized in almost all great ape genomic studies, plus in much broader comparative genomic research. Here, we report that the original sequencing Consortium inadvertently switched nine of the ten samples and/or resulting re-sequenced genomes, erroneously attributing eight of these to the wrong source individuals. Among them is a genome from the recently identified Tapanuli (P. tapanuliensis) species: thus, this genome was sequenced and published a full six years prior to the species' description. Sex was wrongly assigned to five known individuals; the numbers in one sample identifier were swapped; and the identifier for another sample most closely resembles that of a sample from another individual entirely. These errors have been reproduced in countless subsequent manuscripts, with noted implications for studies reliant on data from known individuals.

3.
Curr Biol ; 32(8): 1754-1763.e6, 2022 04 25.
Article in English | MEDLINE | ID: mdl-35276097

ABSTRACT

Conservation strategies are rarely systematically evaluated, which reduces transparency, hinders the cost-effective deployment of resources, and hides what works best in different contexts. Using data on the iconic and critically endangered orangutan (Pongo spp.), we developed a novel spatiotemporal framework for evaluating conservation investments. We show that around USD 1 billion was invested between 2000 and 2019 into orangutan conservation by governments, nongovernmental organizations, companies, and communities. Broken down by allocation to different conservation strategies, we find that habitat protection, patrolling, and public outreach had the greatest return on investment for maintaining orangutan populations. Given the variability in threats, land-use opportunity costs, and baseline remunerations in different regions, there were differential benefits per dollar invested across conservation activities and regions. We show that although challenging from a data and analysis perspective, it is possible to fully understand the relationships between conservation investments and outcomes and the external factors that influence these outcomes. Such analyses can provide improved guidance toward a more effective biodiversity conservation. Insights into the spatiotemporal interplays between the costs and benefits driving effectiveness can inform decisions about the most suitable orangutan conservation strategies for halting population declines. Although our study focuses on the three extant orangutan species of Sumatra and Borneo, our findings have broad application for evidence-based conservation science and practice worldwide.


Subject(s)
Endangered Species , Pongo , Animals , Conservation of Natural Resources , Indonesia , Pongo pygmaeus , Population Dynamics
4.
Nat Commun ; 12(1): 4280, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34257290

ABSTRACT

Despite long being considered as "junk", transposable elements (TEs) are now accepted as catalysts of evolution. One example is Mutator-like elements (MULEs, one type of terminal inverted repeat DNA TEs, or TIR TEs) capturing sequences as Pack-MULEs in plants. However, their origination mechanism remains perplexing, and whether TIR TEs mediate duplication in animals is almost unexplored. Here we identify 370 Pack-TIRs in 100 animal reference genomes and one Pack-TIR (Ssk-FB4) family in fly populations. We find that single-copy Pack-TIRs are mostly generated via transposition-independent gap filling, and multicopy Pack-TIRs are likely generated by transposition after replication fork switching. We show that a proportion of Pack-TIRs are transcribed and often form chimeras with hosts. We also find that Ssk-FB4s represent a young protein family, as supported by proteomics and signatures of positive selection. Thus, TIR TEs catalyze new gene structures and new genes in animals via both transposition-independent and -dependent mechanisms.


Subject(s)
DNA Transposable Elements/genetics , Genome, Plant/genetics , Terminal Repeat Sequences/genetics , Animals , Oryza/genetics
5.
Dev Cell ; 56(4): 478-493.e11, 2021 02 22.
Article in English | MEDLINE | ID: mdl-33476555

ABSTRACT

The human genome harbors 14,000 duplicated or retroposed pseudogenes. Given their functionality as regulatory RNAs and low conservation, we hypothesized that pseudogenes could shape human-specific phenotypes. To test this, we performed co-expression analyses and found that pseudogene exhibited tissue-specific expression, especially in the bone marrow. By incorporating genetic data, we identified a bone-marrow-specific duplicated pseudogene, HBBP1 (η-globin), which has been implicated in ß-thalassemia. Extensive functional assays demonstrated that HBBP1 is essential for erythropoiesis by binding the RNA-binding protein (RBP), HNRNPA1, to upregulate TAL1, a key regulator of erythropoiesis. The HBBP1/TAL1 interaction contributes to a milder symptom in ß-thalassemia patients. Comparative studies further indicated that the HBBP1/TAL1 interaction is human-specific. Genome-wide analyses showed that duplicated pseudogenes are often bound by RBPs and less commonly bound by microRNAs compared with retropseudogenes. Taken together, we not only demonstrate that pseudogenes can drive human evolution but also provide insights on their functional landscapes.


Subject(s)
Erythropoiesis/genetics , Globins/genetics , Pseudogenes , beta-Thalassemia/genetics , Binding, Competitive , Bone Marrow/metabolism , Cell Differentiation/genetics , Cell Line , Erythroid Cells/metabolism , Erythroid Cells/pathology , Heterogeneous Nuclear Ribonucleoprotein A1/metabolism , Humans , Organ Specificity/genetics , Protein Binding , Protein Stability , RNA Stability , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Species Specificity , T-Cell Acute Lymphocytic Leukemia Protein 1/genetics , T-Cell Acute Lymphocytic Leukemia Protein 1/metabolism
6.
BMC Genomics ; 21(1): 873, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33287706

ABSTRACT

BACKGROUND: Orang-utans comprise three critically endangered species endemic to the islands of Borneo and Sumatra. Though whole-genome sequencing has recently accelerated our understanding of their evolutionary history, the costs of implementing routine genome screening and diagnostics remain prohibitive. Capitalizing on a tri-fold locus discovery approach, combining data from published whole-genome sequences, novel whole-exome sequencing, and microarray-derived genotype data, we aimed to develop a highly informative gene-focused panel of targets that can be used to address a broad range of research questions. RESULTS: We identified and present genomic co-ordinates for 175,186 SNPs and 2315 Y-chromosomal targets, plus 185 genes either known or presumed to be pathogenic in cardiovascular (N = 109) or respiratory (N = 43) diseases in humans - the primary and secondary causes of captive orang-utan mortality - or a majority of other human diseases (N = 33). As proof of concept, we designed and synthesized 'SeqCap' hybrid capture probes for these targets, demonstrating cost-effective target enrichment and reduced-representation sequencing. CONCLUSIONS: Our targets are of broad utility in studies of orang-utan ancestry, admixture and disease susceptibility and aetiology, and thus are of value in addressing questions key to the survival of these species. To facilitate comparative analyses, these targets could now be standardized for future orang-utan population genomic studies. The targets are broadly compatible with commercial target enrichment platforms and can be utilized as published here to synthesize applicable probes.


Subject(s)
Genomics , Pongo , Animals , Borneo , Disease Susceptibility , Humans , Indonesia , Pongo/genetics
7.
Curr Biol ; 28(5): 761-769.e5, 2018 03 05.
Article in English | MEDLINE | ID: mdl-29456144

ABSTRACT

Unsustainable exploitation of natural resources is increasingly affecting the highly biodiverse tropics [1, 2]. Although rapid developments in remote sensing technology have permitted more precise estimates of land-cover change over large spatial scales [3-5], our knowledge about the effects of these changes on wildlife is much more sparse [6, 7]. Here we use field survey data, predictive density distribution modeling, and remote sensing to investigate the impact of resource use and land-use changes on the density distribution of Bornean orangutans (Pongo pygmaeus). Our models indicate that between 1999 and 2015, half of the orangutan population was affected by logging, deforestation, or industrialized plantations. Although land clearance caused the most dramatic rates of decline, it accounted for only a small proportion of the total loss. A much larger number of orangutans were lost in selectively logged and primary forests, where rates of decline were less precipitous, but where far more orangutans are found. This suggests that further drivers, independent of land-use change, contribute to orangutan loss. This finding is consistent with studies reporting hunting as a major cause in orangutan decline [8-10]. Our predictions of orangutan abundance loss across Borneo suggest that the population decreased by more than 100,000 individuals, corroborating recent estimates of decline [11]. Practical solutions to prevent future orangutan decline can only be realized by addressing its complex causes in a holistic manner across political and societal sectors, such as in land-use planning, resource exploitation, infrastructure development, and education, and by increasing long-term sustainability [12]. VIDEO ABSTRACT.


Subject(s)
Conservation of Natural Resources , Endangered Species/trends , Pongo pygmaeus/physiology , Animals , Borneo , Indonesia , Malaysia , Natural Resources/supply & distribution , Population Dynamics
8.
Sci Rep ; 7(1): 4839, 2017 07 07.
Article in English | MEDLINE | ID: mdl-28687788

ABSTRACT

For many threatened species the rate and drivers of population decline are difficult to assess accurately: species' surveys are typically restricted to small geographic areas, are conducted over short time periods, and employ a wide range of survey protocols. We addressed methodological challenges for assessing change in the abundance of an endangered species. We applied novel methods for integrating field and interview survey data for the critically endangered Bornean orangutan (Pongo pygmaeus), allowing a deeper understanding of the species' persistence through time. Our analysis revealed that Bornean orangutan populations have declined at a rate of 25% over the last 10 years. Survival rates of the species are lowest in areas with intermediate rainfall, where complex interrelations between soil fertility, agricultural productivity, and human settlement patterns influence persistence. These areas also have highest threats from human-wildlife conflict. Survival rates are further positively associated with forest extent, but are lower in areas where surrounding forest has been recently converted to industrial agriculture. Our study highlights the urgency of determining specific management interventions needed in different locations to counter the trend of decline and its associated drivers.


Subject(s)
Endangered Species , Pongo pygmaeus/growth & development , Population Dynamics/trends , Animals , Borneo , Models, Statistical , Survival Analysis
9.
PLoS One ; 11(12): e0168715, 2016.
Article in English | MEDLINE | ID: mdl-28033350

ABSTRACT

The hypervariable region I (HVRI) is persistently used to discern haplotypes, to distinguish geographic subpopulations, and to infer taxonomy in a range of organisms. Numerous studies have highlighted greater heterogeneity elsewhere in the mitochondrial DNA control region, however-particularly, in some species, in other understudied hypervariable regions. To assess the abundance and utility of such potential variations in orang-utans, we characterised 36 complete control-region haplotypes, of which 13 were of Sumatran and 23 of Bornean maternal ancestry, and compared polymorphisms within these and within shorter HVRI segments predominantly analysed in prior phylogenetic studies of Sumatran (~385 bp) and Bornean (~323 bp) orang-utans. We amplified the complete control region in a single PCR that proved successful even with highly degraded, non-invasive samples. By using species-specific primers to produce a single large amplicon (~1600 bp) comprising flanking coding regions, our method also serves to better avoid amplification of nuclear mitochondrial insertions (numts). We found the number, length and position of hypervariable regions is inconsistent between orang-utan species, and that prior definitions of the HVRI were haphazard. Polymorphisms occurring outside the predominantly analysed segments were phylogeographically informative in isolation, and could be used to assign haplotypes to comparable clades concordant with geographic subpopulations. The predominantly analysed segments could discern only up to 76% of all haplotypes, highlighting the forensic utility of complete control-region sequences. In the face of declining sequencing costs and our proven application to poor-quality DNA extracts, we see no reason to ever amplify only specific 'hypervariable regions' in any taxa, particularly as their lengths and positions are inconsistent and cannot be reliably defined-yet this strategy predominates widely. Given their greater utility and consistency, we instead advocate analysis of complete control-region sequences in future studies, where any shorter segment might otherwise have proven the region of choice.


Subject(s)
DNA, Mitochondrial/genetics , Genetic Variation , Pongo pygmaeus/genetics , Animals , Feces , Phylogeny , Sequence Analysis, DNA
10.
Sci Rep ; 6: 22026, 2016 Feb 25.
Article in English | MEDLINE | ID: mdl-26911345

ABSTRACT

Confiscated and displaced mammals are often taken to sanctuaries, where the explicit goal may be reintroduction to the wild. By inadvertently collecting animals from different source populations, however, such efforts risk reintroducing individuals that have not been in genetic contact for significant periods of time. Using genetic analyses and 44 years of data from Camp Leakey, an orang-utan rehabilitation site on Borneo, we determined the minimum extent to which orang-utans representing non-native, geographically and reproductively isolated taxa were reintroduced into the surrounding wild population. We found two reintroduced females were from a non-native subspecies, and have since produced at least 22 hybridized and introgressed descendants to date, of which at least 15 are living. Given that Bornean orang-utan subspecies are thought to have diverged from a common ancestor around 176,000 years ago, with marked differentiation over the last 80,000 years, we highlight the need for further evaluation of the effects of hybridizing orang-utans of different taxa--particularly in light of the ~1500 displaced orang-utans awaiting urgent reintroduction. As endangered mammals are increasing in number in sanctuaries worldwide, we stress the need for re-examination of historical reintroductions, to assess the extent and effects of de facto translocations in the past.


Subject(s)
Breeding , Mammals , Animals , Borneo , DNA, Mitochondrial , Endangered Species , Evolution, Molecular , Genetics, Population , Phylogeny , Population Dynamics
11.
Primates ; 53(2): 181-92, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22109351

ABSTRACT

This study investigated the reproductive parameters of free-ranging rehabilitant female orangutans. We aimed to assess the factors that influence these parameters and provide information that could assist with the management of orangutan reintroduction programs. We analyzed the birth records of free-ranging female rehabilitants at Bukit Lawang, Bukit Tigapuluh, Sepilok, Camp Leakey, Kaja Island, Sungai Wain, and Meratus and compared them with reproductive parameters reported in wild and zoo populations. Females' ages at first birth were 10.6-14.7 years, significantly earlier than those of wild and zoo orangutans. Computed inter-birth intervals (IBIs) calculated by the Kaplan-Meier method were 65.1-90.1 months; the values for Camp Leakey and Bukit Lawang rehabilitants were significantly shorter than those reported for wild Sumatran orangutans. Infant mortality rates were 18-61%; the values for Bukit Lawang and Sepilok were significantly higher than those reported for wild Sumatran and zoo orangutans. In rehabilitants, young ages at first birth and shorter IBIs may result from the high energy intake enabled by provisioning, although the possibility exists that they reflect underestimations of age on arrival at rehabilitation centers. The observed high infant mortality rate may reflect poor mothering skills due to human rearing and/or increased disease transmission. This study demonstrates that accelerated reproductive rates (younger age at first birth and shorter IBI) are common in provisioned rehabilitant females on both Sumatra and Borneo.


Subject(s)
Aging/physiology , Parturition , Pongo/physiology , Animals , Behavior, Animal , Borneo , Conservation of Natural Resources , Female , Indonesia , Pregnancy , Sex Ratio
SELECTION OF CITATIONS
SEARCH DETAIL
...