Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Int J Mol Sci ; 23(15)2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35955672

ABSTRACT

A kenaf-derived activated carbon (KAC) for a high-power density supercapacitor was developed in this study through phosphoric acid activation. The N2/77K isothermal adsorption-desorption curve was used to estimate the textural properties of KAC based on BET and BJH and the pore size distribution based on NLDFT. The electrochemical properties of KAC were analyzed by using the coin-type cell applying 1 M SPBBF4/PC electrolyte, and the specific surface area and total pore volume were 1490-1942 m2/g and 1.18-3.18 cm3/g, respectively. The pore characteristics of KAC varied according to the activation temperature, and most KAC showed a mesoporous structure. As the activation temperature increased, the mesopore volume increased up to 700 °C, then decreased. The mesoporous structure of KAC resulted in a substantial decrease in the Warburg impedance as the ion diffusion resistance decreased. Hence, the specific capacitance of KAC decreased from 82.9 F/g to 59.48 F/g as the charge-discharge rate increased from 1 mA/g to 10 mA/g, with the rate of reduction at approximately 30%. The rate of reduction of KAC's specific capacitance was 50% lower compared with commercial activated carbon; hence, KAC is a more suitable electrode-active material for high power density supercapacitors.


Subject(s)
Charcoal , Adsorption , Biomass , Charcoal/chemistry , Electric Capacitance , Electrodes
SELECTION OF CITATIONS
SEARCH DETAIL
...