Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomolecules ; 14(6)2024 May 24.
Article in English | MEDLINE | ID: mdl-38927025

ABSTRACT

The exosome multiprotein complex plays a critical role in RNA processing and degradation. This system governs the regulation of mRNA quality, degradation in the cytoplasm, the processing of short noncoding RNA, and the breakdown of RNA fragments. We determined two crystal structures of exosome components from Thermoplasma acidophilum (Taci): one with a resolution of 2.3 Å that reveals the central components (TaciRrp41 and TaciRrp42), and another with a resolution of 3.5 Å that displays the whole exosome (TaciRrp41, TaciRrp42, and TaciRrp4). The fundamental exosome structure revealed the presence of a heterodimeric complex consisting of TaciRrp41 and TaciRrp42. The structure comprises nine subunits, with TaciRrp41 and TaciRrp42 arranged in a circular configuration, while TaciRrp4 is located at the apex. The RNA degradation capabilities of the TaciRrp4:41:42 complex were verified by RNA degradation assays, consistent with prior findings in other archaeal exosomes. The resemblance between archaeal exosomes and bacterial PNPase suggests a common mechanism for RNA degradation. Despite sharing comparable topologies, the surface charge distributions of TaciRrp4 and other archaea structures are surprisingly distinct. Different RNA breakdown substrates may be responsible for this variation. These newfound structural findings enhance our comprehension of RNA processing and degradation in biological systems.


Subject(s)
Archaeal Proteins , Exosomes , Thermoplasma , Thermoplasma/metabolism , Exosomes/metabolism , Exosomes/chemistry , Crystallography, X-Ray , Archaeal Proteins/chemistry , Archaeal Proteins/metabolism , Archaeal Proteins/genetics , Models, Molecular , Protein Subunits/chemistry , Protein Subunits/metabolism , Exosome Multienzyme Ribonuclease Complex/metabolism , Exosome Multienzyme Ribonuclease Complex/chemistry , RNA Stability
2.
EMBO Mol Med ; 15(7): e16940, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37212275

ABSTRACT

Prolyl-tRNA synthetase 1 (PARS1) has attracted much interest in controlling pathologic accumulation of collagen containing high amounts of proline in fibrotic diseases. However, there are concerns about its catalytic inhibition for potential adverse effects on global protein synthesis. We developed a novel compound, DWN12088, whose safety was validated by clinical phase 1 studies, and therapeutic efficacy was shown in idiopathic pulmonary fibrosis model. Structural and kinetic analyses revealed that DWN12088 binds to catalytic site of each protomer of PARS1 dimer in an asymmetric mode with different affinity, resulting in decreased responsiveness at higher doses, thereby expanding safety window. The mutations disrupting PARS1 homodimerization restored the sensitivity to DWN12088, validating negative communication between PARS1 promoters for the DWN12088 binding. Thus, this work suggests that DWN12088, an asymmetric catalytic inhibitor of PARS1 as a novel therapeutic agent against fibrosis with enhanced safety.


Subject(s)
Amino Acyl-tRNA Synthetases , Humans , Amino Acyl-tRNA Synthetases/chemistry , Amino Acyl-tRNA Synthetases/genetics , Amino Acyl-tRNA Synthetases/metabolism , Fibrosis , Proline/genetics , Proline/metabolism , Protein Biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL