Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Microbiol ; 62(3): 167-179, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38630349

ABSTRACT

The human gut houses a diverse and dynamic microbiome critical for digestion, metabolism, and immune development, exerting profound effects on human health. However, these microorganisms pose a potential threat by breaching the gut barrier, entering host tissues, and triggering infections, uncontrolled inflammation, and even sepsis. The intestinal epithelial cells form the primary defense, acting as a frontline barrier against microbial invasion. Antimicrobial proteins (AMPs), produced by these cells, serve as innate immune effectors that regulate the gut microbiome by directly killing or inhibiting microbes. Abnormal AMP production, whether insufficient or excessive, can disturb the microbiome equilibrium, contributing to various intestinal diseases. This review delves into the complex interactions between AMPs and the gut microbiota and sheds light on the role of AMPs in governing host-microbiota interactions. We discuss the function and mechanisms of action of AMPs, their regulation by the gut microbiota, microbial evasion strategies, and the consequences of AMP dysregulation in disease. Understanding these complex interactions between AMPs and the gut microbiota is crucial for developing strategies to enhance immune responses and combat infections within the gut microbiota. Ongoing research continues to uncover novel aspects of this intricate relationship, deepening our understanding of the factors shaping gut health. This knowledge has the potential to revolutionize therapeutic interventions, offering enhanced treatments for a wide range of gut-related diseases.


Subject(s)
Gastrointestinal Microbiome , Gastrointestinal Microbiome/physiology , Humans , Animals , Antimicrobial Peptides/metabolism , Immunity, Innate , Intestinal Mucosa/microbiology , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Bacteria/metabolism , Intestines/microbiology , Intestines/immunology
2.
Microbiol Spectr ; 11(4): e0030523, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37289068

ABSTRACT

Enteropathogenic bacteria express two-component systems (TCSs) to sense and respond to host environments, developing resistance to host innate immune systems like cationic antimicrobial peptides (CAMPs). Although an opportunistic human pathogen Vibrio vulnificus shows intrinsic resistance to the CAMP-like polymyxin B (PMB), its TCSs responsible for resistance have barely been investigated. Here, a mutant exhibiting a reduced growth rate in the presence of PMB was screened from a random transposon mutant library of V. vulnificus, and response regulator CarR of the CarRS TCS was identified as essential for its PMB resistance. Transcriptome analysis revealed that CarR strongly activates the expression of the eptA, tolCV2, and carRS operons. In particular, the eptA operon plays a major role in developing the CarR-mediated PMB resistance. Phosphorylation of CarR by the sensor kinase CarS is required for the regulation of its downstream genes, leading to the PMB resistance. Nevertheless, CarR directly binds to specific sequences in the upstream regions of the eptA and carRS operons, regardless of its phosphorylation. Notably, the CarRS TCS alters its own activation state by responding to several environmental stresses, including PMB, divalent cations, bile salts, and pH change. Furthermore, CarR modulates the resistance of V. vulnificus to bile salts and acidic pH among the stresses, as well as PMB. Altogether, this study suggests that the CarRS TCS, in responding to multiple host environmental signals, could provide V. vulnificus with the benefit of surviving within the host by enhancing its optimal fitness during infection. IMPORTANCE Enteropathogenic bacteria have evolved multiple TCSs to recognize and appropriately respond to host environments. CAMP is one of the inherent host barriers that the pathogens encounter during the course of infection. In this study, the CarRS TCS of V. vulnificus was found to develop resistance to PMB, a CAMP-like antimicrobial peptide, by directly activating the expression of the eptA operon. Although CarR binds to the upstream regions of the eptA and carRS operons regardless of phosphorylation, phosphorylation of CarR is required for the regulation of the operons, resulting in the PMB resistance. Furthermore, the CarRS TCS determines the resistance of V. vulnificus to bile salts and acidic pH by differentially regulating its own activation state in response to these environmental stresses. Altogether, the CarRS TCS responds to multiple host-related signals, and thus could enhance the survival of V. vulnificus within the host, leading to successful infection.


Subject(s)
Polymyxin B , Vibrio vulnificus , Humans , Polymyxin B/pharmacology , Vibrio vulnificus/genetics , Gene Expression Profiling , Bile Acids and Salts
3.
BMB Rep ; 56(2): 133-139, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36751944

ABSTRACT

The human intestine is home to a dense community of microbiota that plays a key role in human health and disease. Nutrients are essential regulators of both host and microbial physiology and function as key coordinators of host-microbe interactions. Therefore, understanding the specific roles and underlying mechanisms of each nutrient in regulating the host-microbe interactions will be essential in developing new strategies for improving human health through microbiota and nutrient intervention. This review will give a basic overview of the role of vitamin A, an essential micronutrient, on human health, and highlight recent findings on the mechanisms by which it regulates the host-microbe interactions. [BMB Reports 2023; 56(3): 133-139].


Subject(s)
Host Microbial Interactions , Microbiota , Humans , Vitamin A , Intestines , Microbiota/physiology
4.
Science ; 373(6561): eabf9232, 2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34529485

ABSTRACT

Vitamin A and its derivative retinol are essential for the development of intestinal adaptive immunity. Retinoic acid (RA)­producing myeloid cells are central to this process, but how myeloid cells acquire retinol for conversion to RA is unknown. Here, we show that serum amyloid A (SAA) proteins­retinol-binding proteins induced in intestinal epithelial cells by the microbiota­deliver retinol to myeloid cells. We identify low-density lipoprotein (LDL) receptor­related protein 1 (LRP1) as an SAA receptor that endocytoses SAA-retinol complexes and promotes retinol acquisition by RA-producing intestinal myeloid cells. Consequently, SAA and LRP1 are essential for vitamin A­dependent immunity, including B and T cell homing to the intestine and immunoglobulin A production. Our findings identify a key mechanism by which vitamin A promotes intestinal immunity.


Subject(s)
Adaptive Immunity , Intestinal Mucosa/immunology , Intestine, Small/immunology , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , Myeloid Cells/metabolism , Serum Amyloid A Protein/metabolism , Vitamin A/metabolism , Animals , B-Lymphocytes/immunology , CD11c Antigen/analysis , CD4-Positive T-Lymphocytes/immunology , Cell Line , Endocytosis , Gene Deletion , Humans , Immunoglobulin A/biosynthesis , Intestinal Mucosa/cytology , Intestinal Mucosa/metabolism , Intestine, Small/cytology , Intestine, Small/metabolism , Low Density Lipoprotein Receptor-Related Protein-1/genetics , Mice , Mice, Inbred C57BL , Myeloid Cells/immunology , Protein Binding , Retinol-Binding Proteins/metabolism , Salmonella Infections, Animal/immunology , Salmonella typhimurium , Serum Amyloid A Protein/genetics , Th17 Cells/immunology
5.
Proc Natl Acad Sci U S A ; 116(38): 19077-19082, 2019 09 17.
Article in English | MEDLINE | ID: mdl-31484771

ABSTRACT

Serum amyloid A (SAA) proteins are strongly induced in the liver by systemic infection and in the intestine by bacterial colonization. In infected mice, SAA proteins circulate in association with the vitamin A derivative retinol, suggesting that SAAs transport retinol during infection. Here we illuminate a structural basis for the retinol-SAA interaction. In the bloodstream of infected mice, most SAA is complexed with high-density lipoprotein (HDL). However, we found that the majority of the circulating retinol was associated with the small fraction of SAA proteins that circulate without binding to HDL, thus identifying free SAA as the predominant retinol-binding form in vivo. We then determined the crystal structure of retinol-bound mouse SAA3 at a resolution of 2.2 Å. Retinol-bound SAA3 formed a novel asymmetric trimeric assembly that was generated by the hydrophobic packing of the conserved amphipathic helices α1 and α3. This hydrophobic packing created a retinol-binding pocket in the center of the trimer, which was confirmed by mutagenesis studies. Together, these findings illuminate the molecular basis for retinol transport by SAA proteins during infection.


Subject(s)
Salmonella typhimurium/metabolism , Serum Amyloid A Protein/chemistry , Serum Amyloid A Protein/metabolism , Typhoid Fever/metabolism , Vitamin A/metabolism , Vitamins/metabolism , Animals , Crystallography, X-Ray , Mice , Mice, Knockout , Models, Molecular , Mutation , Protein Conformation , Serum Amyloid A Protein/genetics , Typhoid Fever/virology
6.
Proc Natl Acad Sci U S A ; 116(22): 10911-10916, 2019 05 28.
Article in English | MEDLINE | ID: mdl-31097581

ABSTRACT

Vitamin A is a dietary component that is essential for the development of intestinal immunity. Vitamin A is absorbed and converted to its bioactive derivatives retinol and retinoic acid by the intestinal epithelium, yet little is known about how epithelial cells regulate vitamin A-dependent intestinal immunity. Here we show that epithelial cell expression of the transcription factor retinoic acid receptor ß (RARß) is essential for vitamin A-dependent intestinal immunity. Epithelial RARß activated vitamin A-dependent expression of serum amyloid A (SAA) proteins by binding directly to Saa promoters. In accordance with the known role of SAAs in regulating Th17 cell effector function, epithelial RARß promoted IL-17 production by intestinal Th17 cells. More broadly, epithelial RARß was required for the development of key vitamin A-dependent adaptive immune responses, including CD4+ T-cell homing to the intestine and the development of IgA-producing intestinal B cells. Our findings provide insight into how the intestinal epithelium senses dietary vitamin A status to regulate adaptive immunity, and highlight the role of epithelial cells in regulating intestinal immunity in response to diet.


Subject(s)
Immunity, Mucosal/physiology , Intestinal Mucosa/metabolism , Receptors, Retinoic Acid/metabolism , Serum Amyloid A Protein/metabolism , Vitamin A/metabolism , Animals , Cell Line , Gastrointestinal Microbiome/physiology , Hep G2 Cells , Humans , Mice , Receptors, Retinoic Acid/genetics , Serum Amyloid A Protein/genetics
7.
Sci Rep ; 9(1): 4346, 2019 03 13.
Article in English | MEDLINE | ID: mdl-30867441

ABSTRACT

Increasing antibiotic resistance has led to the development of new strategies to combat bacterial infection. Anti-virulence strategies that impair virulence of bacterial pathogens are one of the novel approaches with less selective pressure for developing resistance than traditional strategies that impede viability. In this study, a small molecule CM14 [N-(4-oxo-4H-thieno[3,4-c]chromen-3-yl)-3-phenylprop-2-ynamide] that inhibits the activity of HlyU, a transcriptional regulator essential for the virulence of the fulminating human pathogen Vibrio vulnificus, has been identified. Without affecting bacterial growth or triggering the host cell death, CM14 reduces HlyU-dependent expression of virulence genes in V. vulnificus. In addition to the decreased hemolysis of human erythrocytes, CM14 impedes host cell rounding and lysis caused by V. vulnificus. Notably, CM14 significantly enhances survival of mice infected with V. vulnificus by alleviating hepatic and renal dysfunction and systemic inflammation. Biochemical, mass spectrometric, and mutational analyses revealed that CM14 inhibits HlyU from binding to target DNA by covalently modifying Cys30. Remarkably, CM14 decreases the expression of various virulence genes of other Vibrio species and thus attenuates their virulence phenotypes. Together, this molecule could be an anti-virulence agent against HlyU-harboring Vibrio species with a low selective pressure for the emergence of resistance.


Subject(s)
Bacterial Proteins/antagonists & inhibitors , Vibrio vulnificus/pathogenicity , Virulence/drug effects , Animals , Bacterial Proteins/genetics , Drug Resistance, Bacterial/genetics , Mice , Vibrio vulnificus/genetics , Vibrio vulnificus/growth & development , Virulence Factors/genetics
8.
mBio ; 9(1)2018 01 30.
Article in English | MEDLINE | ID: mdl-29382732

ABSTRACT

Pathogenic Vibrio species cause diseases in diverse marine animals reared in aquaculture. Since their pathogenesis, persistence, and survival in marine environments are regulated by quorum sensing (QS), QS interference has attracted attention as a means to control these bacteria in aquatic settings. A few QS inhibitors of Vibrio species have been reported, but detailed molecular mechanisms are lacking. Here, we identified a novel, potent, and selective Vibrio QS inhibitor, named QStatin [1-(5-bromothiophene-2-sulfonyl)-1H-pyrazole], which affects Vibrio harveyi LuxR homologues, the well-conserved master transcriptional regulators for QS in Vibrio species. Crystallographic and biochemical analyses showed that QStatin binds tightly to a putative ligand-binding pocket in SmcR, the LuxR homologue in V. vulnificus, and changes the flexibility of the protein, thereby altering its transcription regulatory activity. Transcriptome analysis revealed that QStatin results in SmcR dysfunction, affecting the expression of SmcR regulon required for virulence, motility/chemotaxis, and biofilm dynamics. Notably, QStatin attenuated representative QS-regulated phenotypes in various Vibrio species, including virulence against the brine shrimp (Artemia franciscana). Together, these results provide molecular insights into the mechanism of action of an effective, sustainable QS inhibitor that is less susceptible to resistance than other antimicrobial agents and useful in controlling the virulence of Vibrio species in aquacultures.IMPORTANCE Yields of aquaculture, such as penaeid shrimp hatcheries, are greatly affected by vibriosis, a disease caused by pathogenic Vibrio infections. Since bacterial cell-to-cell communication, known as quorum sensing (QS), regulates pathogenesis of Vibrio species in marine environments, QS inhibitors have attracted attention as alternatives to conventional antibiotics in aquatic settings. Here, we used target-based high-throughput screening to identify QStatin, a potent and selective inhibitor of V. harveyi LuxR homologues, which are well-conserved master QS regulators in Vibrio species. Structural and biochemical analyses revealed that QStatin binds tightly to a putative ligand-binding pocket on SmcR, the LuxR homologue in V. vulnificus, and affects expression of QS-regulated genes. Remarkably, QStatin attenuated diverse QS-regulated phenotypes in various Vibrio species, including pathogenesis against brine shrimp, with no impact on bacterial viability. Taken together, the results suggest that QStatin may be a sustainable antivibriosis agent useful in aquacultures.


Subject(s)
Anti-Bacterial Agents/pharmacology , Gene Expression Regulation, Bacterial/drug effects , Quorum Sensing/drug effects , Repressor Proteins/antagonists & inhibitors , Trans-Activators/antagonists & inhibitors , Vibrio/drug effects , Crystallography, X-Ray , Gene Expression Profiling , Protein Binding , Repressor Proteins/chemistry , Trans-Activators/chemistry
9.
J Biol Chem ; 292(17): 7223-7232, 2017 04 28.
Article in English | MEDLINE | ID: mdl-28264933

ABSTRACT

Most Gram-negative bacteria respond to excessive levels of H2O2 using the peroxide-sensing transcriptional regulator OxyR, which can induce the expression of antioxidant genes to restore normality. Vibrio vulnificus has two distinct OxyRs (OxyR1 and OxyR2), which are sensitive to different levels of H2O2 and induce expression of two different peroxidases, Prx1 and Prx2. Although OxyR1 has both high sequence similarity and H2O2 sensitivity comparable with that of other OxyR proteins, OxyR2 exhibits limited sequence similarity and is more sensitive to H2O2 To investigate the basis for this difference, we determined crystal structures and carried out biochemical analyses of OxyR2. The determined structure of OxyR2 revealed a flipped conformation of the peptide bond before Glu-204, a position occupied by glycine in other OxyR proteins. Activity assays showed that the sensitivity to H2O2 was reduced to the level of other OxyR proteins by the E204G mutation. We solved the structure of the OxyR2-E204G mutant with the same packing environment. The structure of the mutant revealed a dual conformation of the peptide bond before Gly-204, indicating the structural flexibility of the region. This structural duality extended to the backbone atoms of Gly-204 and the imidazole ring of His-205, which interact with H2O2 and invariant water molecules near the peroxidatic cysteine, respectively. Structural comparison suggests that Glu-204 in OxyR2 provides rigidity to the region that is important in H2O2 sensing, compared with the E204G structure or other OxyR proteins. Our findings provide a structural basis for the higher sensitivity of OxyR2 to H2O2 and also suggest a molecular mechanism for bacterial regulation of expression of antioxidant genes at divergent concentrations of cellular H2O2.


Subject(s)
Bacterial Proteins/metabolism , Hydrogen Peroxide/chemistry , Vibrio vulnificus/metabolism , Antioxidants/chemistry , Catalytic Domain , Crystallography, X-Ray , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Bacterial/drug effects , Genetic Variation , Glutamine/chemistry , Glycine/chemistry , Histidine/chemistry , Horseradish Peroxidase/chemistry , Imidazoles/chemistry , Kinetics , Lysine/chemistry , Mutagenesis, Site-Directed , Mutation , Protein Multimerization , RNA/analysis , Repressor Proteins/metabolism , Transcription Factors/metabolism
10.
J Biol Chem ; 291(31): 16038-47, 2016 07 29.
Article in English | MEDLINE | ID: mdl-27268058

ABSTRACT

The bacterial transcriptional regulator OxyR is known to function as a two-state redox switch. OxyR senses cellular levels of H2O2 via a "sensing cysteine" that switches from the reduced to a disulfide state upon H2O2 exposure, inducing the expression of antioxidant genes. The reduced and disulfide states of OxyR, respectively, bind to extended and compact regions of DNA, where the reduced state blocks and the oxidized state allows transcription and further induces target gene expression by interacting with RNA polymerase. Vibrio vulnificus OxyR2 senses H2O2 with high sensitivity and induces the gene encoding the antioxidant Prx2. In this study, we used mass spectrometry to identify a third redox state of OxyR2, in which the sensing cysteine was overoxidized to S-sulfonated cysteine (Cys-SO3H) by high H2O2 in vitro and in vivo, where the modification deterred the transcription of prx2 The DNA binding preferences of OxyR25CA-C206D, which mimics overoxidized OxyR2, suggested that overoxidized OxyR2 binds to the extended DNA site, masking the -35 region of the prx2 promoter. These combined results demonstrate that OxyR2 functions as a three-state redox switch to tightly regulate the expression of prx2, preventing futile production of Prx2 in cells exposed to high levels of H2O2 sufficient to inactivate Prx2. We further provide evidence that another OxyR homolog, OxyR1, displays similar three-state behavior, inviting further exploration of this phenomenon as a potentially general regulatory mechanism.


Subject(s)
Bacterial Proteins , Gene Expression Regulation, Bacterial/physiology , Gene Expression Regulation, Enzymologic/physiology , Peroxiredoxins , Promoter Regions, Genetic/physiology , Transcription Factors , Vibrio vulnificus , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cysteine/genetics , Cysteine/metabolism , Hydrogen Peroxide/metabolism , Oxidation-Reduction , Peroxiredoxins/biosynthesis , Peroxiredoxins/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Vibrio vulnificus/genetics , Vibrio vulnificus/metabolism
11.
J Biol Chem ; 289(52): 36263-74, 2014 Dec 26.
Article in English | MEDLINE | ID: mdl-25398878

ABSTRACT

Peroxiredoxins (Prxs) are ubiquitous antioxidant enzymes that reduce toxic peroxides. A new Vibrio vulnificus Prx, named Prx3, was identified and characterized in this study. Biochemical and mutational analyses revealed that Prx3 reduces H2O2, utilizing glutaredoxin 3 (Grx3) and glutathione (GSH) as reductants, and requires only N-terminal peroxidatic cysteine for its catalysis. These results, combined with the monomeric size of Prx3 observed under non-reducing conditions, suggested that Prx3 is a Grx3/GSH-dependent 1-Cys Prx and oxidized without forming intermolecular disulfide bonds. The prx3 mutation impaired growth in the medium containing peroxides and reduced virulence in mice, indicating that Prx3 is essential for survival under oxidative stress and pathogenesis of V. vulnificus. The Fe-S cluster regulator IscR activates prx3 by direct binding to a specific binding sequence centered at -44 from the transcription start site. The binding sequence was homologous to the Type 2 IscR-binding sequence, most likely recognized by the Fe-S clusterless apo-IscR in Escherichia coli. The iscR3CA mutant, chromosomally encoding the apo-locked IscR, exhibited 3-fold higher levels of activation of prx3 than the wild type and accumulated more IscR3CA protein in cells. The IscR-dependent activation of prx3 by aerobic growth and iron starvation was also associated with the increase in cellular levels of IscR protein. Taken together, the results suggested that IscR senses iron starvation as well as reactive oxygen species and shifts to the apo-form, which leads to the increase of cellular IscR and in turn prx3 expression, contributing to the survival and virulence of V. vulnificus during pathogenesis.


Subject(s)
Bacterial Proteins/physiology , Peroxiredoxin III/physiology , Vibrio vulnificus/enzymology , Amino Acid Sequence , Animals , Bacterial Proteins/chemistry , Base Sequence , Binding Sites , Female , Gene Expression Regulation, Bacterial , Iron/metabolism , Mice, Inbred ICR , Microbial Viability , Molecular Sequence Data , Oxidative Stress , Peroxiredoxin III/chemistry , Promoter Regions, Genetic , Transcription, Genetic , Vibrio Infections/microbiology , Vibrio vulnificus/pathogenicity , Virulence
12.
Mol Microbiol ; 93(5): 992-1009, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25041181

ABSTRACT

Two peroxiredoxins, Prx1 and Prx2, were previously identified in Vibrio vulnificus. Besides OxyR1, a homologue of Escherichia coli OxyR (EcOxyR), OxyR2 that shares low homology with EcOxyR was first identified in V. vulnificus. OxyR2 activated prx2 during aerobic growth, while OxyR1 activated prx1 only when exposed to exogenous H2O2. OxyR2 was oxidized to form a reversible C206 to C215 disulphide bond by sensing low levels of H2O2, which were insufficient to oxidize OxyR1, and only the oxidized OxyR2 activated prx2. OxyR25CA, in which all cysteine residues except for C206 and C215 were replaced with alanines, and its mutants, OxyR25CA-C206S and OxyR25CA-C215S, were constructed. OxyR25CA and OxyR25CA-C215S directly bound to a specific binding sequence centred at -56.5 from the prx2 transcription start site, albeit with different binding affinities. The binding sequence consisted of four ATCGnt elements spaced by a helical turn and aligned in the twofold dyad symmetry, suggesting that OxyR2 binds DNA as a tetramer. OxyR25CA-C206S also directly bound to DNA comprising more extended sequences, indicating that oxidized and reduced OxyR2 adopt different conformational states, leading to altered DNA contacts. The oxyR2 mutation reduced cytotoxicity and growth during infection, indicating that OxyR2 is essential for the pathogenesis of V. vulnificus.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Hydrogen Peroxide/metabolism , Peroxiredoxins/metabolism , Repressor Proteins/metabolism , Vibrio vulnificus/metabolism , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Binding Sites , Molecular Sequence Data , Peroxiredoxins/chemistry , Peroxiredoxins/genetics , Promoter Regions, Genetic , Repressor Proteins/chemistry , Repressor Proteins/genetics , Sequence Alignment , Vibrio vulnificus/chemistry , Vibrio vulnificus/genetics
13.
J Biol Chem ; 287(51): 42516-24, 2012 Dec 14.
Article in English | MEDLINE | ID: mdl-23095744

ABSTRACT

Peroxiredoxins (Prxs) are ubiquitous antioxidant enzymes reducing toxic peroxides. Two distinct 2-Cys Prxs, Prx1 and Prx2, were identified in Vibrio vulnificus, a facultative aerobic pathogen. Both Prxs have two conserved catalytic cysteines, C(P) and C(R), but Prx2 is more homologous in amino acid sequences to eukaryotic Prx than to Prx1. Prx2 utilized thioredoxin A as a reductant, whereas Prx1 required AhpF. Prx2 contained GGIG and FL motifs similar to the motifs conserved in sensitive Prxs and exhibited sensitivity to overoxidation. MS analysis and C(P)-SO(3)H specific immunoblotting demonstrated overoxidation of C(P) to C(P)-SO(2)H (or C(P)-SO(3)H) in vitro and in vivo, respectively. In contrast, Prx1 was robust and C(P) was not overoxidized. Discrete expression of the Prxs implied that Prx2 is induced by trace amounts of H(2)O(2) and thereby residential in cells grown aerobically. In contrast, Prx1 was occasionally expressed only in cells exposed to high levels of H(2)O(2). A mutagenesis study indicated that lack of Prx2 accumulated sufficient H(2)O(2) to induce Prx1. Kinetic properties indicated that Prx2 effectively scavenges low levels of peroxides because of its high affinity to H(2)O(2), whereas Prx1 quickly degrades higher levels of peroxides because of its high turnover rate and more efficient reactivation. This study revealed that the two Prxs are differentially optimized for detoxifying distinct ranges of H(2)O(2), and proposed that Prx2 is a residential scavenger of peroxides endogenously generated, whereas Prx1 is an occasional scavenger of peroxides exogenously encountered. Furthermore, genome sequence database search predicted widespread coexistence of the two Prxs among bacteria.


Subject(s)
Cysteine/metabolism , Oxidative Stress , Peroxiredoxins/metabolism , Vibrio vulnificus/enzymology , Amino Acid Sequence , Conserved Sequence , Enzyme Activation/drug effects , Gene Expression Regulation, Bacterial/drug effects , Humans , Hydrogen Peroxide/pharmacology , Inactivation, Metabolic , Kinetics , Models, Biological , Molecular Sequence Data , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Peroxiredoxins/chemistry , Sequence Analysis, Protein , Thioredoxins/metabolism , Vibrio vulnificus/drug effects , Vibrio vulnificus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL