Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Protoc ; 15(6): 2024-2040, 2020 06.
Article in English | MEDLINE | ID: mdl-32433625

ABSTRACT

Preservation of human organs at subzero temperatures has been an elusive goal for decades. The major complication hindering successful subzero preservation is the formation of ice at temperatures below freezing. Supercooling, or subzero non-freezing, preservation completely avoids ice formation at subzero temperatures. We previously showed that rat livers can be viably preserved three times longer by supercooling as compared to hypothermic preservation at +4 °C. Scalability of supercooling preservation to human organs was intrinsically limited because of volume-dependent stochastic ice formation at subzero temperatures. However, we recently adapted the rat preservation approach so it could be applied to larger organs. Here, we describe a supercooling protocol that averts freezing of human livers by minimizing air-liquid interfaces as favorable sites of ice nucleation and uses preconditioning with cryoprotective agents to depress the freezing point of the liver tissue. Human livers are homogeneously preconditioned during multiple machine perfusion stages at different temperatures. Including preparation, the protocol takes 31 h to complete. Using this protocol, human livers can be stored free of ice at -4 °C, which substantially extends the ex vivo life of the organ. To our knowledge, this is the first detailed protocol describing how to perform subzero preservation of human organs.


Subject(s)
Liver/physiology , Organ Preservation/methods , Cold Temperature , Cryoprotective Agents/chemistry , Equipment Design , Freezing , Humans , Ice/analysis , Liver/chemistry , Organ Preservation/instrumentation , Perfusion/instrumentation , Perfusion/methods
2.
J Vis Exp ; (152)2019 10 25.
Article in English | MEDLINE | ID: mdl-31710044

ABSTRACT

Vitrification is a promising ice-free alternative for classic slow-freezing (at approximately 1 °C/min) cryopreservation of biological samples. Vitrification requires extremely fast cooling rates to achieve transition of water into the glass phase while avoiding injurious ice formation. Although pre-incubation with cryoprotective agents (CPA) can reduce the critical cooling rate of biological samples, high concentrations are generally needed to enable ice-free cryopreservation by vitrification. As a result, vitrification is hampered by CPA toxicity and restricted to small samples that can be cooled fast. It was recently demonstrated that these inherent limitations can be overcome by bulk droplet vitrification. Using this novel method, cells are first pre-incubated with a low intracellular CPA concentration. Leveraging rapid osmotic dehydration, the intracellular CPA is concentrated directly ahead of vitrification, without the need to fully equilibrate toxic CPA concentrations. The cellular dehydration is performed in a fluidic device and integrated with continuous high throughput generation of large sized droplets that are vitrified in liquid nitrogen. This ice-free cryopreservation method with minimal CPA toxicity is suitable for large cell quantities and results in increased hepatocyte viability and metabolic function as compared to classical slow-freezing cryopreservation. This manuscript describes the methods for successful bulk droplet vitrification in detail.


Subject(s)
Cryopreservation/methods , Cryoprotective Agents/chemistry , Hepatocytes/cytology , Vitrification , Freezing , Phase Transition , Water
3.
Nat Biotechnol ; 37(10): 1131-1136, 2019 10.
Article in English | MEDLINE | ID: mdl-31501557

ABSTRACT

The inability to preserve vascular organs beyond several hours contributes to the scarcity of organs for transplantation1,2. Standard hypothermic preservation at +4 °C (refs. 1,3) limits liver preservation to less than 12 h. Our group previously showed that supercooled ice-free storage at -6 °C can extend viable preservation of rat livers4,5 However, scaling supercooling preservation to human organs is intrinsically limited because of volume-dependent stochastic ice formation. Here, we describe an improved supercooling protocol that averts freezing of human livers by minimizing favorable sites of ice nucleation and homogeneous preconditioning with protective agents during machine perfusion. We show that human livers can be stored at -4 °C with supercooling followed by subnormothermic machine perfusion, effectively extending the ex vivo life of the organ by 27 h. We show that viability of livers before and after supercooling is unchanged, and that after supercooling livers can withstand the stress of simulated transplantation by ex vivo normothermic reperfusion with blood.


Subject(s)
Cold Temperature , Liver/physiology , Organ Preservation/methods , Humans , Organ Preservation Solutions , Perfusion , Tissue Survival
4.
Langmuir ; 35(23): 7354-7363, 2019 06 11.
Article in English | MEDLINE | ID: mdl-30514081

ABSTRACT

Loss of hepatocyte viability and metabolic function after cryopreservation is still a major issue. Although vitrification is a promising alternative, it has generally been proven to be unsuitable for vitrification of large cell volumes which is required for clinical applications. Here, we propose a novel bulk droplet (3-5 mm diameter) vitrification method which allows high throughput volumes (4 mL/min), while using a low preincubated CPA concentration (15% v/v) to minimize toxicity and loss of cell viability and function. We used rapid (1.25 s) osmotic dehydration to concentrate a low preincubated intracellular CPA concentration ahead of vitrification, without the need of fully equilibrating toxic CPA concentrations. We compared direct postpreservation viability, long-term viability, and metabolic function of bulk droplet vitrified, cryopreserved, and fresh hepatocytes. Simulations and cooling rate measurements confirmed an adequate concentration of the intracellular CPA concentration (up to 8.53 M) after dehydration in combination with high cooling rates (960-1320 °C/min) for successful vitrification. In comparison to cryopreserved hepatocytes, bulk droplet vitrified hepatocytes had a significantly higher viability, directly after preservation and after 1 day in culture. Moreover, bulk droplet vitrified hepatocytes had evidently better morphology and showed significantly higher metabolic activity than cryopreserved hepatocytes in long-term collagen sandwich cultures. In conclusion, we developed a novel bulk droplet vitrification method of which we validated the theoretical background and demonstrated the feasibility to use this method to vitrify large cell volumes. Moreover, we showed that this method results in improved hepatocyte viability and metabolic function as compared to cryopreservation.


Subject(s)
Cryopreservation/instrumentation , Hepatocytes/cytology , Animals , Cell Membrane/metabolism , Cell Survival , Feasibility Studies , Female , Hydrodynamics , Rats
5.
J Bone Miner Res ; 30(4): 690-4, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25359523

ABSTRACT

Contrast-enhancement magnetic resonance imaging (CE-MRI) of synovial volume is the radiographic gold standard to quantify joint inflammation; however, cost limits its use. Therefore, we examined if power Doppler-ultrasound (PD-US) outcomes of synovitis in tumor necrosis factor transgenic (TNF-Tg) mice correlate with CE-MRI. TNF-Tg mice underwent PD-US of their knees to measure the joint space volume (JSV) and power Doppler volume (PDV), and the results were correlated with synovial volume determined by CE-MRI. Immunohistochemistry for CD31 was performed to corroborate the PD signal. Synovial volume strongly correlated with both JSV and PDV (p < 0.01). CD31(+) blood vessels were observed in inflamed synovium proximal to the joint surface, which corresponded to areas of intense PD signals. JSV and PDV are valid measures of joint inflammation that correlate with synovial volume determined by CE-MRI and are associated with vascularity. Given the emergence of PD-US as a nonquantitative outcome of joint inflammation, we find JSV and PDV to be feasible and highly cost-effective for longitudinal studies in animal models. Furthermore, given the increasing use of PD-US in standard clinical practice, JSV and PDV could be translated to better quantify joint flare and response to therapy in patients with rheumatoid arthritis (RA).


Subject(s)
Arthritis/diagnosis , Contrast Media , Magnetic Resonance Imaging/methods , Ultrasonography, Doppler/methods , Animals , Arthritis/diagnostic imaging , Mice , Mice, Transgenic
SELECTION OF CITATIONS
SEARCH DETAIL
...