Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Cancer Med ; 12(8): 9527-9540, 2023 04.
Article in English | MEDLINE | ID: mdl-37015898

ABSTRACT

OBJECTIVES: This research aimed to explore the relationship between pre-treatment inflammatory markers and other clinical characteristics and the survival of small-cell lung cancer (SCLC) patients who received first-line platinum-based treatment and to construct nomograms for predicting overall survival (OS) and progression-free survival (PFS). METHODS: A total of 612 patients diagnosed with SCLC between March 2008 and August 2021 were randomly divided into two cohorts: a training cohort (n = 459) and a validation cohort (n = 153). Inflammatory markers, clinicopathological factors, and follow-up information of patients were collected for each case. Cox regression was used to conduct univariate and multivariate analyses and the independent prognostic factors were adopted to develop the nomograms. Harrell's concordance index (C-index) and time-dependent receiver operating characteristic curve were used to verify model differentiation, calibration curve was used to verify consistency, and decision curve analysis was used to verify the clinical application value. RESULTS: Our results showed that baseline C-reactive protein/albumin ratio, neutrophil/lymphocyte ratio, NSE level, hyponatremia, the efficacy of first-line chemotherapy, and stage were independent prognostic factors for both OS and PFS in SCLC. In the training cohort, the C-index of PFS and OS was 0.698 and 0.666, respectively. In the validation cohort, the C-index of PFS and OS was 0.727 and 0.747, respectively. The nomograms showed good predictability and high clinical value. Also, our new clinical models were superior to the US Veterans Administration Lung Study Group (VALG) staging for predicting the prognosis of SCLC. CONCLUSIONS: The two prognostic nomograms of SCLC including inflammatory markers, VALG stage, and other clinicopathological factors had good predictive value and could individually assess the survival of patients.


Subject(s)
Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Prognosis , Small Cell Lung Carcinoma/pathology , Nomograms , Group Processes , Neoplasm Staging
2.
Environ Pollut ; 323: 121233, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36804561

ABSTRACT

Microplastics have been recognized as a widespread new pollutant in nature and have induced an increase in the occurrence of a variety of diseases in carp. An animal model of microplastic ingestion was successfully established in an aqueous environment. The gut microbiota was analysed using a metagenomic approach. The results showed a significant reduction in the relative abundances of Lactococcus garvieae, Bacteroides_paurosaccharolyticus, and Romboutsia_ilealis after PS-MPs treatment. The 16S Silva database was used to predict and analyse the known genes. Intestinal flora disorders related to infectious diseases, cancers, neurodegenerative diseases, endocrine and metabolic diseases, cardiovascular diseases, and other diseases were found. The intake of PS-MPs resulted in damage to carp intestinal tissue and apoptosis of intestinal epithelial cells. The levels of the inflammatory cytokines IL-1ß, IL-6, and TNF-α were significantly increased with the intake of PS-MPs. The gene and protein levels of GRP78, Caspase-3, Caspase-7, Caspase-9, Caspase-12, PERK, IRE1, and ATF6 were further examined in PS group. The occurrence of ERS and apoptosis in carp intestines was confirmed. These results suggest that the accumulation of PS-MPs in the aquatic environment can disturb the carp gut microbiota and induce ERS, apoptosis, and inflammation in the intestinal tissue.


Subject(s)
Carps , Gastrointestinal Microbiome , Animals , Microplastics/toxicity , Polystyrenes , Plastics , Intestines , Inflammation/chemically induced , Apoptosis , Endoplasmic Reticulum Stress
3.
Biol Trace Elem Res ; 201(4): 1878-1887, 2023 Apr.
Article in English | MEDLINE | ID: mdl-35576098

ABSTRACT

Selenium (Se) is one of the essential trace elements in animal organisms with good antioxidant and immune-enhancing abilities. In this study, we investigated the effect and mechanism of Se deficiency on skeletal muscle cell differentiation. A selenium-deficient skeletal muscle model was established. The skeletal muscle tissue and blood Se content were significantly reduced in the Se deficiency group. HE staining showed that the skeletal muscle tissue had a reduced myofiber area and nuclei and an increased myofascicular membrane with Se deficiency. The TUNEL test showed massive apoptosis of skeletal muscle cells in Se deficiency. With Se deficiency, reactive oxygen species (ROS) and malondialdehyde (MDA) increased, and the activities of glutathione peroxidase (GSH-Px), total antioxidant capacity (T-AOC), superoxide dismutase (SOD), and catalase (CAT) were inhibited. In in vitro experiments, microscopic observations showed that the low-Se group had reduced C2C12 cell fusion and a reduced number of differentiated myotubes. In addition, qPCR results showed that differentiation genes (Myog, Myod, Myh2, Myh3, and Myf5) were significantly reduced in the low Se group. Meanwhile, Western blot analysis showed that the levels of differentiation proteins (Myog, Myod, and Myhc) were significantly reduced in the low-Se group. This finding indicates that Se deficiency reduces the expression of skeletal muscle cell differentiation factors. All the above data suggest that Se deficiency can lead to oxidative stress in skeletal muscle, resulting in a reduction in the differentiation capacity of muscle cells.


Subject(s)
Antioxidants , Selenium , Mice , Animals , Antioxidants/metabolism , Oxidative Stress , Cell Differentiation , Muscle, Skeletal/metabolism , Glutathione Peroxidase/metabolism
4.
Biol Trace Elem Res ; 200(9): 4045-4057, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34739677

ABSTRACT

Zinc (Zn) is an essential trace element for the body. Studies have confirmed that Zn deficiency can cause oxidative stress. The purpose of the present study was designed to investigate the effect of Zn on fibrosis in lung of mice and its mechanism. Mice were fed with different Zn levels dietary, then we found that the Zn-deficient diet induced a decrease of Zn level in lung tissue. The results also revealed the alveolar structure hyperemia and an inflammatory exudated in the alveolar cavity. Moreover, immunohistochemical results showed that the expression of α-smooth muscle actin (α-SMA) increased. And the Sirius red staining indicated an increase in collagen with Zn deficiency. Furthermore, oxygen radicals (ROS) levels were significantly increased, and the antioxidants were significantly decreased. Meanwhile, inflammatory factors (TNF-α and IL-1ß) were remarkably increased, and the ELISA results showed that collagen I, III, and IV and fibronectin (FN) were increased. In addition, the expressions of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinase (TIMPs) were detected by qPCR. The results showed that the expression of TIMPs was increased but the expression of MMPs was decreased. The results of the experiment in vitro were consistent with that in vivo. All the results indicated that Zn deficiency aggravated the oxidative stress response of lung tissue to induce inflammation, leading to fibrosis in lung.


Subject(s)
Inflammation , Oxidative Stress , Collagen , Fibrosis , Humans , Lung/metabolism , Matrix Metalloproteinases/metabolism , Zinc/pharmacology
5.
Front Cell Dev Biol ; 9: 622198, 2021.
Article in English | MEDLINE | ID: mdl-33681201

ABSTRACT

Succinylation is a newly discovered and multienzyme-regulated post-translational modification (PTM) that is associated with the initiation and progression of cancer. Currently, no systematic analyses on the role of succinylation regulators in tumors have been reported. In this study, we performed a comprehensive pan-cancer analysis on four well-known succinylation regulators (CPT1A, KAT2A, SIRT5, and SIRT7). We found that these regulators played specific and critical roles in the prognosis of clear cell renal cell carcinoma (ccRCC). We constructed a risk score (RS) based on two independent prognostic prediction factors, CPT1A and KAT2A, and subsequently developed a nomogram model containing the RS, which showed good accuracy in the prediction of overall survival (OS) in ccRCC patients. Furthermore, we used the similar expression pattern of four succinylation regulators according to consensus clustering analysis to divide the patients into three clusters that exhibited prominently different OS as well as clinicopathological characteristics. Differently expressed genes (DEGs) and pathway enrichment analyses of three clusters indicated that succinylation regulators might promote malignant progression of ccRCC by regulating the infiltration of immune cells and RNA N6-methyladenosine (m6A) methylation. Importantly, our data suggest that CPT1A and SIRT5 might up-regulate and down-regulate the expression of LRPPRC and EIF3B, respectively. Our study systematically analyzed the prognostic predictive values of four succinylation regulators and revealed their potential mechanisms in ccRCC aggressiveness. These data provide new insight into the understanding of succinylation modification and present clinical evidence for its role in ccRCC treatments.

6.
J Transl Int Med ; 9(4): 249-263, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-35136724

ABSTRACT

BACKGROUND: Inhibitors targeting integrins (ITGs) are applied as a novel strategy for cancers including lung cancer; however, the heterogeneity of ITG subunits might explain why ITG-targeted inhibitors only show limited efficacy for a small group of lung cancer patients. MATERIALS AND METHODS: RNA-Seq data of lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) patients were obtained from the TCGA database. Cox regression analysis was performed to construct the prognostic signature and generate the nomogram combined with pathologic stages (pStage). GEO datasets were used for verification. The related biological functions were analyzed by Gene Set Enrichment Analysis (GSEA) software and the TIMER database. RESULTS: By Cox regression analysis of 30 ITG subunits, ITG subunit alpha 5 (ITGA5), ITG subunit alpha 6 (ITGA6), and ITG subunit alpha L (ITGAL) were identified as the prognostic factors in LUAD, which were included in the construction of a LUAD-specific 3-ITG signature. Following the calculation of risk score (RS) of each patient based on 3-ITG signature, patients with high RS in LUAD were found to exhibit worse prognosis, especially in early stage. Nomogram combined with RS and pStage could predict the prognosis of LUAD patients accurately. Mechanism exploration by GSEA showed that metastasis-related microenvironmental pathways were significantly enriched in the high-RS group. An elevated expression of ITGA5 was mainly associated with the promotion of cell migration and invasion, while the high expression of ITGAL had a strong positive correlation with the capability of recognizing and killing cancer cells. CONCLUSIONS: Three-ITG signature could improve the prediction ability combined with pStage in LUAD and might contribute to poor prognosis by metastasis and immune escape-related pathways.

7.
Front Oncol ; 10: 1126, 2020.
Article in English | MEDLINE | ID: mdl-32766145

ABSTRACT

The abnormal m6A modification caused by m6A modulators is a common feature of various tumors; however, little is known about which m6A modulator plays the most important role in triple-negative breast cancer (TNBC). In this study, when analyzing the influence of m6A modulators (METTL3, METTL14, WTAP, FTO, and ALKBH5) on the prognosis of breast cancer, especially in TNBC using several on-line databases, methyltransferase-like 3 (METTL3) was found to have low expression in breast cancer, and was closely associated with short-distance-metastasis-free survival in TNBC. Further investigation showed that knockdown of METTL3 could enhance the ability of migration, invasion, and adhesion by decreasing m6A level in TNBC cell lines. Collagen type III alpha 1 chain (COL3A1) was identified and verified as a target gene of METTL3. METTL3 could down-regulate the expression of COL3A1 by increasing its m6A methylation, ultimately inhibiting the metastasis of TNBC cells. Finally, with immunohistochemistry staining in breast cancer tissues, it was proved that METTL3 expression was negatively correlated with COL3A1 in TNBC, but not in non-TNBC. This study demonstrated the potential mechanism of m6A modification in metastasis and provided potential targets for treatment in TNBC.

8.
Front Oncol ; 10: 695, 2020.
Article in English | MEDLINE | ID: mdl-32435620

ABSTRACT

Background: Casitas B-lineage lymphoma proto-oncogene-b (Cbl-b) is an E3 ubiquitin-protein ligase and a signal-transducing adaptor protein involved in the development and progression of cancer. Despite the known functions of Cbl-b, its role in breast cancer remains unclear. The aim of this study is to explore the prognostic value of Cbl-b in breast cancer. Methods: Cbl-b expression was analyzed by immunohistochemistry in 292 breast cancer patients from the First Hospital of China Medical University between 1999 and 2008. Kaplan-Meier curve and Cox proportional hazards regression were used to analyze the independent prognostic factors for overall survival (OS) and disease-free survival (DFS). Nomogram was constructed based on these prognostic factors. Results: Cbl-b expression was detected in 54.1% (158/292) breast cancer tissue samples. Cbl-b expression was correlated with DFS (p = 0.033), but was not significantly associated with the known clinic-pathological factors in this study. Log-rank analysis indicated that Cbl-b expression was correlated with better OS (p = 0.013) and DFS (p = 0.016). Multivariate analysis showed that Cbl-b expression was an independent prognostic factor in breast cancer. The nomogram we built for predicting OS was integrated with Cbl-b expression, age, tumor size, lymph node metastasis and histological grade. Except tumor size, all the above factors and date of diagnosis were used to construct the DFS nomogram. The C-indexes of the nomograms were 0.735 and 0.678, respectively. Our new clinical model was superior to the TNM staging for prediction of OS. Conclusion: Cbl-b expression independently predicts favorable prognosis in breast cancer. Cbl-b expression, combined with other variables could be more precise clinical predictive models for predicting OS and DFS in patients with breast cancer.

9.
Front Oncol ; 9: 1243, 2019.
Article in English | MEDLINE | ID: mdl-31803620

ABSTRACT

Gastric cancer (GC), with high heterogeneity, can be mainly classified into intestinal type and diffuse type according to the Lauren classification system. Although a number of differences were reported between these two types, no study on the Lauren subtype-specific multi-gene signature for evaluation of GC prognosis has been conducted, and the molecular mechanism underlying its poor prognosis has still remained elusive. Therefore, this study aimed to explore subtype-specific multi-gene signature for prognostic prediction in different subtypes of Lauren classification. With combination of the least absolute shrinkage and selection operator (LASSO) algorithm and the Akaike information criterion (AIC), the 3-gene subtype-specific prognostic signature was successfully established in diffuse type GC using GSE62254 dataset. Following the calculation of risk score (RS) based on 3-gene signature, the nomogram models were established to predict 1-, 3-, and 5-year overall survival in diffuse type GC. Moreover, the prognostic predictive nomogram model of diffuse type GC was also proved to be effective for validation of GSE1549 dataset and by a Gene Expression Omnibus (GEO)-based meta-analysis. In the analysis of the correlation between RS and clinical-pathological characteristics, RS and two genes of the 3-gene signature (EMCN and COL4A5) were found to be positively correlated with peritoneal metastasis. Furthermore, EMCN and COL4A5, rather than CCL11, were proved to be able to enhance the adhesion ability of MKN45 and NUGC4 cells to peritoneal mesothelial cell line HMR-SV5. Eventually, it was proved that COL4A5 promoted peritoneal metastasis by activating Wnt signaling pathway, whereas the upregulation of integrin family genes mediated by FAK-AKT/ERK/STAT3 signaling pathway activation is involved in peritoneal metastasis promotion function of EMCN. Taken together, our study identified the subtype-specific 3-gene signature in diffuse type GC, which could effectively predict the patients' OS and might explain the molecular mechanisms in presence of its poor prognosis.

10.
Cancer Manag Res ; 11: 3237-3251, 2019.
Article in English | MEDLINE | ID: mdl-31043800

ABSTRACT

PURPOSE: This study aimed to investigate the effect of NPTX1 on the prognosis of gastric cancer (GC), as well as the metastatic process in GC. MATERIALS AND METHODS: The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were used to analyze the association between NPTX1 expression and prognosis in GC. Quantitative real-time polymerase chain reaction and Western blots were applied to examine the expression of NPTX1 in GC cell lines and expression of genes in downstream pathways. The role of NPTX1 on the migration, invasion, adhesion, and proliferation of GC cell lines was investigated with the transwell assay, the adhesion assay, and the MTT assay. Immunofluorescence staining was used to observe the effect of NPTX1 knockdown on the morphology of cells. RESULTS: According to the review of TCGA and GEO databases of GC, we found that the expression of NPTX1 increased in cancer tissues and high NPTX1 expression was correlated with poor overall survival, which was associated with lymph node stage in clinicopathologic parameters. Knockdown of NPTX1 attenuated the migration, invasion, and adhesion abilities of GC cells. According to gene set enrichment analysis, NPTX1 was found to be positively related to integrin and focal adhesion (FA). Additionally, NPTX1 knockdown decreased the expression of integrin α1 and integrin α7, followed by deregulation of the expression of p-Src, p-Akt, p-Erk, MMP2, and MMP7, as well as inhibiting the formation of FA complexes and decreasing the length of pseudopods in GC cells. CONCLUSION: Our study provides strong evidence that NPTX1 plays a crucial role in promoting metastasis and acts as a prognostic indicator in GC.

SELECTION OF CITATIONS
SEARCH DETAIL
...