Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Cell ; 187(3): 642-658.e19, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38218188

ABSTRACT

Despite advances in defining diverse somatic mutations that cause myeloid malignancies, a significant heritable component for these cancers remains largely unexplained. Here, we perform rare variant association studies in a large population cohort to identify inherited predisposition genes for these blood cancers. CTR9, which encodes a key component of the PAF1 transcription elongation complex, is among the significant genes identified. The risk variants found in the cases cause loss of function and result in a ∼10-fold increased odds of acquiring a myeloid malignancy. Partial CTR9 loss of function expands human hematopoietic stem cells (HSCs) by increased super elongation complex-mediated transcriptional activity, which thereby increases the expression of key regulators of HSC self-renewal. By following up on insights from a human genetic study examining inherited predisposition to the myeloid malignancies, we define a previously unknown antagonistic interaction between the PAF1 and super elongation complexes. These insights could enable targeted approaches for blood cancer prevention.


Subject(s)
Hematologic Neoplasms , Phosphoproteins , Transcription Elongation, Genetic , Transcription Factors , Humans , Hematologic Neoplasms/genetics , Hematopoietic Stem Cells/metabolism , Nuclear Proteins/metabolism , Transcription Factors/genetics , Phosphoproteins/genetics
2.
Nat Commun ; 14(1): 5536, 2023 09 08.
Article in English | MEDLINE | ID: mdl-37684235

ABSTRACT

Clonal hematopoiesis (CH)-age-related expansion of mutated hematopoietic clones-can differ in frequency and cellular fitness by CH type (e.g., mutations in driver genes (CHIP), gains/losses and copy-neutral loss of chromosomal segments (mCAs), and loss of sex chromosomes). Co-occurring CH raises questions as to their origin, selection, and impact. We integrate sequence and genotype array data in up to 482,378 UK Biobank participants to demonstrate shared genetic architecture across CH types. Our analysis suggests a cellular evolutionary trade-off between different types of CH, with LOY occurring at lower rates in individuals carrying mutations in established CHIP genes. We observed co-occurrence of CHIP and mCAs with overlap at TET2, DNMT3A, and JAK2, in which CHIP precedes mCA acquisition. Furthermore, individuals carrying overlapping CH had high risk of future lymphoid and myeloid malignancies. Finally, we leverage shared genetic architecture of CH traits to identify 15 novel loci associated with leukemia risk.


Subject(s)
Biological Evolution , Clonal Hematopoiesis , Humans , Clonal Hematopoiesis/genetics , Genotype , Clone Cells , DNA Modification Methylases
3.
Nat Commun ; 14(1): 5023, 2023 08 18.
Article in English | MEDLINE | ID: mdl-37596262

ABSTRACT

Blood cells contain functionally important intracellular structures, such as granules, critical to immunity and thrombosis. Quantitative variation in these structures has not been subjected previously to large-scale genetic analysis. We perform genome-wide association studies of 63 flow-cytometry derived cellular phenotypes-including cell-type specific measures of granularity, nucleic acid content and reactivity-in 41,515 participants in the INTERVAL study. We identify 2172 distinct variant-trait associations, including associations near genes coding for proteins in organelles implicated in inflammatory and thrombotic diseases. By integrating with epigenetic data we show that many intracellular structures are likely to be determined in immature precursor cells. By integrating with proteomic data we identify the transcription factor FOG2 as an early regulator of platelet formation and α-granularity. Finally, we show that colocalisation of our associations with disease risk signals can suggest aetiological cell-types-variants in IL2RA and ITGA4 respectively mirror the known effects of daclizumab in multiple sclerosis and vedolizumab in inflammatory bowel disease.


Subject(s)
Genome-Wide Association Study , Proteomics , Microscopy , Transcription Factors , Causality
5.
HGG Adv ; 3(1): 100063, 2022 Jan 13.
Article in English | MEDLINE | ID: mdl-35047852

ABSTRACT

Genome-wide association studies (GWASs) have identified hundreds of thousands of genetic variants associated with complex diseases and traits. However, most variants are noncoding and not clearly linked to genes, making it challenging to interpret these GWAS signals. We present a systematic variant-to-function study, prioritizing the most likely functional elements of the genome for experimental follow-up, for >148,000 variants identified for hematological traits. Specifically, we developed VAMPIRE: Variant Annotation Method Pointing to Interesting Regulatory Effects, an interactive web application implemented in R Shiny. This tool efficiently integrates and displays information from multiple complementary sources, including epigenomic signatures from blood-cell-relevant tissues or cells, functional and conservation summary scores, variant impact on protein and gene expression, chromatin conformation information, as well as publicly available GWAS and phenome-wide association study (PheWAS) results. Leveraging data generated from independently performed functional validation experiments, we demonstrate that our prioritized variants, genes, or variant-gene links are significantly more likely to be experimentally validated. This study not only has important implications for systematic and efficient revelation of functional mechanisms underlying GWAS variants for hematological traits but also provides a prototype that can be adapted to many other complex traits, paving the path for efficient variant-to-function (V2F) analyses.

6.
Blood ; 139(16): 2534-2546, 2022 04 21.
Article in English | MEDLINE | ID: mdl-35030251

ABSTRACT

Master regulators, such as the hematopoietic transcription factor (TF) GATA1, play an essential role in orchestrating lineage commitment and differentiation. However, the precise mechanisms by which such TFs regulate transcription through interactions with specific cis-regulatory elements remain incompletely understood. Here, we describe a form of congenital hemolytic anemia caused by missense mutations in an intrinsically disordered region of GATA1, with a poorly understood role in transcriptional regulation. Through integrative functional approaches, we demonstrate that these mutations perturb GATA1 transcriptional activity by partially impairing nuclear localization and selectively altering precise chromatin occupancy by GATA1. These alterations in chromatin occupancy and concordant chromatin accessibility changes alter faithful gene expression, with failure to both effectively silence and activate select genes necessary for effective terminal red cell production. We demonstrate how disease-causing mutations can reveal regulatory mechanisms that enable the faithful genomic targeting of master TFs during cellular differentiation.


Subject(s)
Anemia , GATA1 Transcription Factor , Cell Differentiation/genetics , Chromatin/genetics , Chromatin Immunoprecipitation , Erythropoiesis/genetics , GATA1 Transcription Factor/genetics , GATA1 Transcription Factor/metabolism , Humans
7.
Nat Commun ; 13(1): 151, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013207

ABSTRACT

Thousands of non-coding variants have been associated with increased risk of human diseases, yet the causal variants and their mechanisms-of-action remain obscure. In an integrative study combining massively parallel reporter assays (MPRA), expression analyses (eQTL, meQTL, PCHiC) and chromatin accessibility analyses in primary cells (caQTL), we investigate 1,039 variants associated with multiple myeloma (MM). We demonstrate that MM susceptibility is mediated by gene-regulatory changes in plasma cells and B-cells, and identify putative causal variants at six risk loci (SMARCD3, WAC, ELL2, CDCA7L, CEP120, and PREX1). Notably, three of these variants co-localize with significant plasma cell caQTLs, signaling the presence of causal activity at these precise genomic positions in an endogenous chromosomal context in vivo. Our results provide a systematic functional dissection of risk loci for a hematologic malignancy.


Subject(s)
B-Lymphocytes/pathology , DNA, Intergenic/genetics , Genetic Predisposition to Disease , Multiple Myeloma/genetics , Neoplasm Proteins/genetics , Plasma Cells/pathology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/immunology , Antineoplastic Combined Chemotherapy Protocols , B-Lymphocytes/immunology , Base Sequence , Cell Cycle Proteins/genetics , Cell Cycle Proteins/immunology , Chromatin/chemistry , Chromatin/immunology , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/immunology , DNA, Intergenic/immunology , Gene Expression Regulation, Neoplastic , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/immunology , Humans , Inheritance Patterns , Multiple Myeloma/drug therapy , Multiple Myeloma/immunology , Multiple Myeloma/pathology , Neoplasm Proteins/immunology , Plasma Cells/immunology , Polymorphism, Genetic , Primary Cell Culture , Quantitative Trait Loci , Repressor Proteins/genetics , Repressor Proteins/immunology , Risk Assessment , Transcriptional Elongation Factors/genetics , Transcriptional Elongation Factors/immunology
9.
Nature ; 586(7831): 769-775, 2020 10.
Article in English | MEDLINE | ID: mdl-33057200

ABSTRACT

Myeloproliferative neoplasms (MPNs) are blood cancers that are characterized by the excessive production of mature myeloid cells and arise from the acquisition of somatic driver mutations in haematopoietic stem cells (HSCs). Epidemiological studies indicate a substantial heritable component of MPNs that is among the highest known for cancers1. However, only a limited number of genetic risk loci have been identified, and the underlying biological mechanisms that lead to the acquisition of MPNs remain unclear. Here, by conducting a large-scale genome-wide association study (3,797 cases and 1,152,977 controls), we identify 17 MPN risk loci (P < 5.0 × 10-8), 7 of which have not been previously reported. We find that there is a shared genetic architecture between MPN risk and several haematopoietic traits from distinct lineages; that there is an enrichment for MPN risk variants within accessible chromatin of HSCs; and that increased MPN risk is associated with longer telomere length in leukocytes and other clonal haematopoietic states-collectively suggesting that MPN risk is associated with the function and self-renewal of HSCs. We use gene mapping to identify modulators of HSC biology linked to MPN risk, and show through targeted variant-to-function assays that CHEK2 and GFI1B have roles in altering the function of HSCs to confer disease risk. Overall, our results reveal a previously unappreciated mechanism for inherited MPN risk through the modulation of HSC function.


Subject(s)
Genetic Predisposition to Disease/genetics , Hematopoietic Stem Cells/pathology , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/pathology , Neoplasms/genetics , Neoplasms/pathology , Cell Lineage/genetics , Cell Self Renewal , Checkpoint Kinase 2/genetics , Female , Humans , Leukocytes/pathology , Male , Proto-Oncogene Proteins/genetics , Repressor Proteins/genetics , Risk , Telomere Homeostasis
10.
Nature ; 586(7831): 763-768, 2020 10.
Article in English | MEDLINE | ID: mdl-33057201

ABSTRACT

Age is the dominant risk factor for most chronic human diseases, but the mechanisms through which ageing confers this risk are largely unknown1. The age-related acquisition of somatic mutations that lead to clonal expansion in regenerating haematopoietic stem cell populations has recently been associated with both haematological cancer2-4 and coronary heart disease5-this phenomenon is termed clonal haematopoiesis of indeterminate potential (CHIP)6. Simultaneous analyses of germline and somatic whole-genome sequences provide the opportunity to identify root causes of CHIP. Here we analyse high-coverage whole-genome sequences from 97,691 participants of diverse ancestries in the National Heart, Lung, and Blood Institute Trans-omics for Precision Medicine (TOPMed) programme, and identify 4,229 individuals with CHIP. We identify associations with blood cell, lipid and inflammatory traits that are specific to different CHIP driver genes. Association of a genome-wide set of germline genetic variants enabled the identification of three genetic loci associated with CHIP status, including one locus at TET2 that was specific to individuals of African ancestry. In silico-informed in vitro evaluation of the TET2 germline locus enabled the identification of a causal variant that disrupts a TET2 distal enhancer, resulting in increased self-renewal of haematopoietic stem cells. Overall, we observe that germline genetic variation shapes haematopoietic stem cell function, leading to CHIP through mechanisms that are specific to clonal haematopoiesis as well as shared mechanisms that lead to somatic mutations across tissues.


Subject(s)
Clonal Hematopoiesis/genetics , Genetic Predisposition to Disease , Genome, Human/genetics , Whole Genome Sequencing , Adult , Africa/ethnology , Aged , Aged, 80 and over , Black People/genetics , Cell Self Renewal/genetics , DNA-Binding Proteins/genetics , Dioxygenases , Female , Germ-Line Mutation/genetics , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Humans , Intracellular Signaling Peptides and Proteins/genetics , Male , Middle Aged , National Heart, Lung, and Blood Institute (U.S.) , Phenotype , Precision Medicine , Proto-Oncogene Proteins/genetics , Tripartite Motif Proteins/genetics , United States , alpha Karyopherins/genetics
11.
Cell ; 182(5): 1198-1213.e14, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32888493

ABSTRACT

Most loci identified by GWASs have been found in populations of European ancestry (EUR). In trans-ethnic meta-analyses for 15 hematological traits in 746,667 participants, including 184,535 non-EUR individuals, we identified 5,552 trait-variant associations at p < 5 × 10-9, including 71 novel associations not found in EUR populations. We also identified 28 additional novel variants in ancestry-specific, non-EUR meta-analyses, including an IL7 missense variant in South Asians associated with lymphocyte count in vivo and IL-7 secretion levels in vitro. Fine-mapping prioritized variants annotated as functional and generated 95% credible sets that were 30% smaller when using the trans-ethnic as opposed to the EUR-only results. We explored the clinical significance and predictive value of trans-ethnic variants in multiple populations and compared genetic architecture and the effect of natural selection on these blood phenotypes between populations. Altogether, our results for hematological traits highlight the value of a more global representation of populations in genetic studies.


Subject(s)
Asian People/genetics , Mutation, Missense/genetics , Polymorphism, Single Nucleotide/genetics , White People/genetics , Genetics , Genome-Wide Association Study/methods , HEK293 Cells , Humans , Interleukin-7/genetics , Phenotype
12.
Cell ; 182(5): 1214-1231.e11, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32888494

ABSTRACT

Blood cells play essential roles in human health, underpinning physiological processes such as immunity, oxygen transport, and clotting, which when perturbed cause a significant global health burden. Here we integrate data from UK Biobank and a large-scale international collaborative effort, including data for 563,085 European ancestry participants, and discover 5,106 new genetic variants independently associated with 29 blood cell phenotypes covering a range of variation impacting hematopoiesis. We holistically characterize the genetic architecture of hematopoiesis, assess the relevance of the omnigenic model to blood cell phenotypes, delineate relevant hematopoietic cell states influenced by regulatory genetic variants and gene networks, identify novel splice-altering variants mediating the associations, and assess the polygenic prediction potential for blood traits and clinical disorders at the interface of complex and Mendelian genetics. These results show the power of large-scale blood cell trait GWAS to interrogate clinically meaningful variants across a wide allelic spectrum of human variation.


Subject(s)
Genetic Predisposition to Disease/genetics , Multifactorial Inheritance/genetics , Female , Gene Regulatory Networks/genetics , Genome-Wide Association Study/methods , Hematopoiesis/genetics , Humans , Male , Phenotype , Polymorphism, Single Nucleotide/genetics
13.
EMBO Mol Med ; 11(8): e10316, 2019 08.
Article in English | MEDLINE | ID: mdl-31313878

ABSTRACT

Hematopoiesis, or the process of blood cell production, is a paradigm of multi-lineage cellular differentiation that has been extensively studied, yet in many aspects remains incompletely understood. Nearly all clinically measured hematopoietic traits exhibit extensive variation and are highly heritable, underscoring the importance of genetic variation in these processes. This review explores how human genetics have illuminated our understanding of hematopoiesis in health and disease. The study of rare mutations in blood and immune disorders has elucidated novel roles for regulators of hematopoiesis and uncovered numerous important molecular pathways, as seen through examples such as Diamond-Blackfan anemia and the GATA2 deficiency syndromes. Additionally, population studies of common genetic variation have revealed mechanisms by which human hematopoiesis can be modulated. We discuss advances in functionally characterizing common variants associated with blood cell traits and discuss therapeutic insights, such as the discovery of BCL11A as a modulator of fetal hemoglobin expression. Finally, as genetic techniques continue to evolve, we discuss the prospects, challenges, and unanswered questions that lie ahead in this burgeoning field.


Subject(s)
Hematologic Diseases/genetics , Hematopoiesis/genetics , Mutation , Animals , Genetic Predisposition to Disease , Genome-Wide Association Study , Hematologic Diseases/blood , Hematologic Diseases/diagnosis , Hematologic Diseases/therapy , Humans , Phenotype
14.
Pediatr Blood Cancer ; 66(9): e27874, 2019 09.
Article in English | MEDLINE | ID: mdl-31207059

ABSTRACT

Growth factor-independent 1B (GFI1B) variants are a rare cause of thrombocytopenia. We report on a male child who was initially diagnosed with immune thrombocytopenia. However, subtle clinical signs led to suspicion of a genetic cause of thrombocytopenia. Gene panel sequencing revealed a rare variant in GFI1B (C168F), which has recently been reported in several families with thrombocytopenia. We demonstrate that this variant significantly alters platelet parameters in population studies. This case highlights how diagnoses of exclusion, such as immune thrombocytopenia, can be confounded by genetic variation. Our understanding of blood disorders will undoubtedly evolve from an increased knowledge of human genetic variation.


Subject(s)
Blood Platelets/metabolism , Genetic Diseases, Inborn , Mutation, Missense , Proto-Oncogene Proteins/genetics , Purpura, Thrombocytopenic, Idiopathic , Repressor Proteins/genetics , Child, Preschool , Genetic Diseases, Inborn/blood , Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/genetics , Humans , Male , Purpura, Thrombocytopenic, Idiopathic/blood , Purpura, Thrombocytopenic, Idiopathic/diagnosis , Purpura, Thrombocytopenic, Idiopathic/genetics
15.
Cell Rep ; 27(11): 3228-3240.e7, 2019 06 11.
Article in English | MEDLINE | ID: mdl-31189107

ABSTRACT

Human erythropoiesis serves as a paradigm of physiologic cellular differentiation. This process is also of considerable interest for better understanding anemias and identifying new therapies. Here, we apply deep transcriptomic and accessible chromatin profiling to characterize a faithful ex vivo human erythroid differentiation system from hematopoietic stem and progenitor cells. We reveal stage-specific transcriptional states and chromatin accessibility during various stages of erythropoiesis, including 14,260 differentially expressed genes and 63,659 variably accessible chromatin peaks. Our analysis suggests differentiation stage-predominant roles for specific master regulators, including GATA1 and KLF1. We integrate chromatin profiles with common and rare genetic variants associated with erythroid cell traits and diseases, finding that variants regulating different erythroid phenotypes likely act at variable points during differentiation. In addition, we identify a regulator of terminal erythropoiesis, TMCC2, more broadly illustrating the value of this comprehensive analysis to improve our understanding of erythropoiesis in health and disease.


Subject(s)
Chromatin Assembly and Disassembly , Erythropoiesis , Transcriptome , Aged , Cells, Cultured , Chromatin/chemistry , Chromatin/metabolism , Erythroid Precursor Cells/cytology , Erythroid Precursor Cells/metabolism , Female , GATA1 Transcription Factor/genetics , GATA1 Transcription Factor/metabolism , HEK293 Cells , Humans , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Middle Aged , Polymorphism, Single Nucleotide
16.
Nat Genet ; 51(4): 683-693, 2019 04.
Article in English | MEDLINE | ID: mdl-30858613

ABSTRACT

Widespread linkage disequilibrium and incomplete annotation of cell-to-cell state variation represent substantial challenges to elucidating mechanisms of trait-associated genetic variation. Here we perform genetic fine-mapping for blood cell traits in the UK Biobank to identify putative causal variants. These variants are enriched in genes encoding proteins in trait-relevant biological pathways and in accessible chromatin of hematopoietic progenitors. For regulatory variants, we explore patterns of developmental enhancer activity, predict molecular mechanisms, and identify likely target genes. In several instances, we localize multiple independent variants to the same regulatory element or gene. We further observe that variants with pleiotropic effects preferentially act in common progenitor populations to direct the production of distinct lineages. Finally, we leverage fine-mapped variants in conjunction with continuous epigenomic annotations to identify trait-cell type enrichments within closely related populations and in single cells. Our study provides a comprehensive framework for single-variant and single-cell analyses of genetic associations.


Subject(s)
Hematopoiesis/genetics , Polymorphism, Single Nucleotide/genetics , Cell Lineage/genetics , Chromatin/genetics , Chromosome Mapping/methods , Epigenomics/methods , Genome-Wide Association Study/methods , Humans , Linkage Disequilibrium/genetics , Phenotype , Quantitative Trait Loci/genetics , Regulatory Sequences, Nucleic Acid/genetics
17.
Am J Hematol ; 94(5): 522-527, 2019 05.
Article in English | MEDLINE | ID: mdl-30680775

ABSTRACT

Sickle cell disease (SCD) is the most common monogenic disorder in the world. Notably, there is extensive clinical heterogeneity in SCD that cannot be fully accounted for by known factors, and in particular, the extent to which the phenotypic diversity of SCD can be explained by genetic variation has not been reliably quantified. Here, in a family-based cohort of 449 patients with SCD and 755 relatives, we first show that 5 known modifiers affect 11 adverse outcomes in SCD to varying degrees. We then utilize a restricted maximum likelihood procedure to estimate the heritability of 20 hematologic traits, including fetal hemoglobin (HbF) and white blood cell count (WBC), in the clinically relevant context of inheritance from healthy carriers to SCD patients. We report novel estimations of heritability for HbF at 31.6% (±5.4%) and WBC at 41.2% (±6.8%) in our cohort. Finally, we demonstrate shared genetic bases between HbF, WBC, and other hematologic traits, but surprisingly little overlap between HbF and WBC themselves. In total, our analyses show that HbF and WBC have significant heritable components among individuals with SCD and their relatives, demonstrating the value of using family-based studies to better understand modifiers of SCD.


Subject(s)
Anemia, Sickle Cell/genetics , Family , Fetal Hemoglobin/genetics , Quantitative Trait, Heritable , Adult , Anemia, Sickle Cell/blood , Cohort Studies , Female , Fetal Hemoglobin/metabolism , Humans , Leukocyte Count , Male
18.
Neurology ; 91(15): e1429-e1439, 2018 10 09.
Article in English | MEDLINE | ID: mdl-30209239

ABSTRACT

OBJECTIVE: To compare the expected quality-adjusted life-years (QALYs) in adult patients undergoing immediate vs deferred antiepileptic drug (AED) treatment after a first unprovoked seizure. METHODS: We constructed a simulated clinical trial (Markov decision model) to compare immediate vs deferred AED treatment after a first unprovoked seizure in adults. Three base cases were considered, representing patients with varying degrees of seizure recurrence risk and effect of seizures on quality of life (QOL). Cohort simulation was performed to determine which treatment strategy would maximize the patient's expected QALYs. Sensitivity analyses were guided by clinical data to define decision thresholds across plausible measurement ranges, including seizure recurrence rate, effect of seizure recurrence on QOL, and efficacy of AEDs. RESULTS: For patients with a moderate risk of recurrent seizures (52.0% over 10 years after first seizure), immediate AED treatment maximized QALYs compared to deferred treatment. Sensitivity analyses showed that for the preferred choice to change to deferred AED treatment, key clinical measures needed to reach implausible values were 10-year seizure recurrence rate ≤38.0%, QOL reduction with recurrent seizures ≤0.06, and efficacy of AEDs on lowering seizure recurrence rate ≤16.3%. CONCLUSION: Our model determined that immediate AED treatment is preferable to deferred treatment in adult first-seizure patients over a wide and clinically relevant range of variables. Furthermore, our analysis suggests that the 10-year seizure recurrence rate that justifies AED treatment (38.0%) is substantially lower than the 60% threshold used in the current definition of epilepsy.


Subject(s)
Anticonvulsants/administration & dosage , Seizures/drug therapy , Adult , Clinical Decision-Making , Clinical Trials as Topic , Computer Simulation , Decision Support Techniques , Female , Humans , Male , Markov Chains , Middle Aged , Quality of Life , Quality-Adjusted Life Years , Recurrence , Time Factors , Time-to-Treatment
19.
PLoS Genet ; 14(3): e1007293, 2018 03.
Article in English | MEDLINE | ID: mdl-29590102

ABSTRACT

Co-inheritance of α-thalassemia has a significant protective effect on the severity of complications of sickle cell disease (SCD), including stroke. However, little information exists on the association and interactions for the common African ancestral α-thalassemia mutation (-α3.7 deletion) and ß-globin traits (HbS trait [SCT] and HbC trait) on important clinical phenotypes such as red blood cell parameters, anemia, and chronic kidney disease (CKD). In a community-based cohort of 2,916 African Americans from the Jackson Heart Study, we confirmed the expected associations between SCT, HbC trait, and the -α3.7 deletion with lower mean corpuscular volume/mean corpuscular hemoglobin and higher red blood cell count and red cell distribution width. In addition to the recently recognized association of SCT with lower estimated glomerular filtration rate and glycated hemoglobin (HbA1c), we observed a novel association of the -α3.7 deletion with higher HbA1c levels. Co-inheritance of each additional copy of the -α3.7 deletion significantly lowered the risk of anemia and chronic kidney disease among individuals with SCT (P-interaction = 0.031 and 0.019, respectively). Furthermore, co-inheritance of a novel α-globin regulatory variant was associated with normalization of red cell parameters in individuals with the -α3.7 deletion and significantly negated the protective effect of α-thalassemia on stroke in 1,139 patients with sickle cell anemia from the Cooperative Study of Sickle Cell Disease (CSSCD) (P-interaction = 0.0049). Functional assays determined that rs11865131, located in the major alpha-globin enhancer MCS-R2, was the most likely causal variant. These findings suggest that common α- and ß-globin variants interact to influence hematologic and clinical phenotypes in African Americans, with potential implications for risk-stratification and counseling of individuals with SCD and SCT.


Subject(s)
Anemia, Sickle Cell/genetics , Hemoglobin, Sickle/genetics , Sickle Cell Trait , alpha-Globins/genetics , Adult , Black or African American , Anemia, Sickle Cell/blood , Anemia, Sickle Cell/physiopathology , Cohort Studies , DNA Copy Number Variations , Erythrocytes, Abnormal , Glomerular Filtration Rate , Glycated Hemoglobin/metabolism , Humans , Phenotype , Young Adult , alpha-Thalassemia/genetics
20.
Nucleic Acids Res ; 45(7): e54, 2017 04 20.
Article in English | MEDLINE | ID: mdl-27998929

ABSTRACT

A complex organ contains a variety of cell types, each with its own distinct lineage and function. Understanding the lineage and differentiation state of each cell is fundamentally important for the ultimate delineation of organ formation and function. We developed SLICE, a novel algorithm that utilizes single-cell RNA-seq (scRNA-seq) to quantitatively measure cellular differentiation states based on single cell entropy and predict cell differentiation lineages via the construction of entropy directed cell trajectories. We validated our approach using three independent data sets with known lineage and developmental time information from both Homo sapiens and Mus musculus. SLICE successfully measured the differentiation states of single cells and reconstructed cell differentiation trajectories that have been previously experimentally validated. We then applied SLICE to scRNA-seq of embryonic mouse lung at E16.5 to identify lung mesenchymal cell lineage relationships that currently remain poorly defined. A two-branched differentiation pathway of five fibroblastic subtypes was predicted using SLICE. The present study demonstrated the general applicability and high predictive accuracy of SLICE in determining cellular differentiation states and reconstructing cell differentiation lineages in scRNA-seq analysis.


Subject(s)
Algorithms , Cell Differentiation/genetics , Cell Lineage/genetics , Gene Expression Profiling , Sequence Analysis, RNA , Alveolar Epithelial Cells/cytology , Animals , Embryo, Mammalian/cytology , Embryonic Development , Fibroblasts/cytology , Humans , Lung/cytology , Lung/embryology , Mice , Myoblasts, Skeletal/cytology , Single-Cell Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...