Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 940: 173536, 2024 Aug 25.
Article in English | MEDLINE | ID: mdl-38802006

ABSTRACT

Soil organic matter (SOM) and clay minerals are important sinks for reactive heavy metals (HMs) and exogenous hydrogen ions (H+). Therefore, HMs are likely to be released into soil porewater under acid rainfall conditions due to the competitive adsorption of H+. However, negligible Lead, Zinc, and Cadmium (<6 ‰) in the Pb/Zn smelter soil were leached, and the effects of SOM and clay minerals on HMs leaching were unclear. Herein, the H+ consumption and HMs redistribution on SOM and clay minerals were quantitated by the multi-surface model and density functional theory calculations to reveal the roles of SOM and clay minerals in alleviating HMs' leaching. Clay minerals consumed 43.2 %-52.0 % of the exogenous H+, serving as the dominant sink for the exogenous H+ due to its high content and hindering H+ competitive adsorption on SOM. Protonation of the functional groups constituted >90 % of the total H+ captured by clay minerals. Meanwhile, some H+ also competed with HMs for adsorption sites on clay minerals due to its 0.497-fold to 1.54-fold higher binding energies than HMs, resulting in the release of HMs. On the contrary, SOM served as an accommodator for taking over the released HMs from clay minerals. The HMs complexation on the low-affinity sites (R-L-) of SOM was responsible for the recapture of HMs. In Ca-enriched soil, the released HMs were also recaptured by SOM via ion exchange on the R-L-Ca+ and the high-affinity sites (R-H-Ca+) sites due to the 30.8 %-178 % higher binding energies of HMs on these sites than those of Ca. As a result, >63.4 % of the released HMs from clay minerals were transferred to the SOM. Thus, the synergy of SOM and clay minerals in alleviating the leaching of HMs in Pb/Zn smelter soils cannot be ignored in risk assessment and soil remediation.

SELECTION OF CITATIONS
SEARCH DETAIL
...