Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 123
Filter
Add more filters










Publication year range
1.
ACS Nano ; 17(21): 21317-21327, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37862706

ABSTRACT

The emerging two-dimensional (2D) van der Waals (vdW) materials and their heterostructures hold great promise for optoelectronics and photonic applications beyond strictly lattice-matching constraints and grade interfaces. However, previous photodetectors and optoelectronic devices rely on relatively simple vdW heterostructures with one or two blocks. The realization of high-order heterostructures has been exponentially challenging due to conventional layer-by-layer arduous restacking or sequential synthesis. In this study, we present an approach involving the direct exfoliation of high-quality BiI3-BiI heterostructure nanosheets with alternating blocks, derived from solution-grown binary heterocrystals. These heterostructure-based photodetectors offer several notable advantages. Leveraging the "active layer energetics" of BiI layers and the establishment of a significant depletion region, our photodetector demonstrates a significant reduction in dark current compared with pure BiI3 devices. Specifically, the photodetector achieves an extraordinarily low dark current (<9.2 × 10-14 A at 5 V bias voltage), an impressive detectivity of 8.8 × 1012 Jones at 638 nm, and a rapid response time of 3.82 µs. These characteristics surpass the performance of other metal-semiconductor-metal (MSM) photodetectors based on various 2D materials and structures at visible wavelengths. Moreover, our heterostructure exhibits a broad-band photoresponse, covering the visible, near-infrared (NIR)-I, and NIR-II regions. In addition to these promising results, our heterostructure also demonstrated the potential for flexible and imaging applications. Overall, our study highlights the potential of alternating vdW heterostructures for future optoelectronics with low power consumption, fast response, and flexible requirements.

2.
ACS Appl Mater Interfaces ; 15(42): 49545-49553, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37830979

ABSTRACT

Here, a photoelectrochemical (PEC) photodetector with good flexibility and high photoresponsivity was successfully fabricated in a vertical structure, where the MXene (Ti2CTx) nanosheet and carbon black electrode were separated by adenosine triphosphate/nicotinamide adenine dinucleotide phosphate (ATP/NADPH)-incorporated solid-state electrolyte. The photocurrent and photoresponsivity can reach 1.84 µA/cm2 and 8.89 µA/W, respectively, under a light intensity of 90 mW/cm2 at a bias potential of 0.6 V, which are approximately 2.3 times those of Ti2CTx nanosheets. The addition of ATP and NADPH to the electrolyte also leads to a large decrease of the rise time from 0.76 to 0.26 s. Furthermore, the photodetector can continue to function and maintain stability under 45° bending and after 500 cycles of bending, indicating a robust device structure and great flexibility. The performance enhancement of the PEC photodetector can be attributed to the synergistic effect of electrolyte additives on Ti2CTx nanosheets, where ATP and NADPH greatly enhance the circulation and utilization of photogenerated carriers. This work suggests that the incorporation of chloroplast-inspired carrier circulation with two-dimensional nanosheets could achieve efficient light-current conversion, providing a new strategy to improve the performance of PEC-type photodetectors.

3.
Opt Lett ; 48(10): 2688-2691, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37186741

ABSTRACT

Natural in-plane hyperbolic crystals (such as α-MoO3) and natural monoclinic crystals (such as ß-Ga2O3) have recently drawn great research focus. Despite their obvious similarities, however, these two kinds of materials are usually studied as separate topics. In this Letter, we explore the intrinsic relationship between materials like α-MoO3 and ß-Ga2O3 under the framework of transformation optics, providing another perspective to understand the asymmetry of hyperbolic shear polaritons. It is worth mentioning that we demonstrate this novel, to the best of our knowledge, method from theoretical analysis and numerical simulations, which maintain a high degree of consistency. Our work not only combines natural hyperbolic materials with the theory of classical transformation optics, but also opens new avenues for future studies of various natural materials.

4.
Chem Soc Rev ; 52(1): 212-247, 2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36468561

ABSTRACT

Recently, halide perovskites (HPs) and layered two-dimensional (2D) materials have received significant attention from industry and academia alike. HPs are emerging materials that have exciting photoelectric properties, such as a high absorption coefficient, rapid carrier mobility and high photoluminescence quantum yields, making them excellent candidates for various optoelectronic applications. 2D materials possess confined carrier mobility in 2D planes and are widely employed in nanostructures to achieve interfacial modification. HP/2D material interfaces could potentially reveal unprecedented interfacial properties, including light absorbance with desired spectral overlap, tunable carrier dynamics and modified stability, which may lead to several practical applications. In this review, we attempt to provide a comprehensive perspective on the development of interfacial engineering of HP/2D material interfaces. Specifically, we highlight the recent progress in HP/2D material interfaces considering their architectures, electronic energetics tuning and interfacial properties, discuss the potential applications of these interfaces and analyze the challenges and future research directions of interfacial engineering of HP/2D material interfaces. This review links the fields of HPs and 2D materials through interfacial engineering to provide insights into future innovations and their great potential applications in optoelectronic devices.

5.
Sci Adv ; 8(29): eabp8486, 2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35857836

ABSTRACT

Negative reflection occurs when light is reflected toward the same side of the normal to the boundary from which it is incident. This exotic optical phenomenon is not only yet to be visualized in real space but also remains unexplored, both at the nanoscale and in natural media. Here, we directly visualize nanoscale-confined polaritons negatively reflecting on subwavelength mirrors fabricated in a low-loss van der Waals crystal. Our near-field nanoimaging results unveil an unconventional and broad tunability of both the polaritonic wavelength and direction of propagation upon negative reflection. On the basis of these findings, we introduce a device in nano-optics: a hyperbolic nanoresonator, in which hyperbolic polaritons with different momenta reflect back to a common point source, enhancing the intensity. These results pave way to realize nanophotonics in low-loss natural media, providing an efficient route to control nanolight, a key for future on-chip optical nanotechnologies.

6.
ACS Nano ; 16(8): 12922-12929, 2022 Aug 23.
Article in English | MEDLINE | ID: mdl-35904281

ABSTRACT

Type-II Dirac semimetal platinum ditelluride (PtTe2) is a promising functional material for photodetectors because of its specially tilted Dirac cones, strong light absorption, and high carrier mobilities. The stack of two-dimensional (2D) Dirac heterostructures consisting of PtTe2 and graphene could overcome the limit of detection range and response time occurring in the heterostructures of graphene and other low-mobility and large-gap transition metal dichalcogenides (TMDs). Here, we report an approach for achieving highly controllable, wafer-scale production of 2D Dirac heterostructures of PtTe2/graphene with tunable thickness, variable size, and CMOS compatibility. More importantly, the optimized recipes achieve the exact stoichiometric ratio of 1:2 for Pt and Te elements without contaminating the underlayer graphene film. Because of the built-in electric field at the junction area, the photodetectors based on the PtTe2/graphene heterostructure are self-driven with a broadband photodetection from 405 to 1850 nm. In particular, the photodetectors have a high responsivity of up to ∼0.52 AW-1 (without bias) and a fast response time of ∼8.4 µs. Our work demonstrated an approach to synthesizing hybrid 2D Dirac heterostructures, which can be applied in the integration of on-chip, CMOS-compatible photodetectors with near-infrared detection, high sensitivity, and low energy consumption.

7.
ACS Nano ; 16(6): 9041-9048, 2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35696451

ABSTRACT

Surface plasmons, merging photonics and electronics in nanoscale dimensions, have been the cornerstones in integrated informatics, precision detection, high-resolution imaging, and energy conversion. Arising from the exceptional Fermi-Dirac tunability, ultrafast carrier mobility, and high-field confinement, graphene offers excellent advantages for plasmon technologies and enables a variety of state-of-the-art optoelectronic applications ranging from tight-field-enhanced light sources, modulators, and photodetectors to biochemical sensors. However, it is challenging to co-excite multiple graphene plasmons on one single graphene sheet with high density, a key step toward plasmonic wavelength-division multiplexing and next-generation dynamical optoelectronics. Here, we report the heteroepitaxial growth of a polycrystalline graphene monolayer with patterned gradient grain boundary density, which is synthesized by creating diverse nanosized local growth environments on a centimeter-scale substrate with a polycrystalline graphene ring seed in chemical vapor deposition. Such geometry enables plasmonic co-excitation with varied wavelength diversification in the nanoscale. Via using high-resolution scanning near-field optical microscopy, we demonstrate rich plasmon standing waves, even bright plasmonic hotspots with a size up to 3 µm. Moreover, by changing the grain boundary density and annealing, we find the local plasmonic wavelengths are widely tunable, from 70 to 300 nm. Theoretical modeling supports that such plasmonic versatility is due to the grain boundary-induced plasmon-phonon interactions through random phase approximation. The seed-induced heteroepitaxial growth provides a promising way for the grain boundary engineering of two-dimensional materials, and the controllable grain boundary-based plasmon co-generation and manipulation in one single graphene monolayer will facilitate the applications of graphene for plasmonics and nanophotonics.

8.
Opt Lett ; 47(10): 2458-2461, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35561375

ABSTRACT

In this Letter, we explore the Cherenkov radiation properties of α-phase molybdenum trioxide (α-MoO3). We demonstrate that the asymmetric, forward, and reverse Cherenkov radiation can simultaneously exist by rotating the α-MoO3 slab at the same working frequency and structure. In addition, thanks to the tunable functionalities of graphene, the conversion of forward and reverse Cherenkov radiation can be actualized by altering the Fermi level of graphene. These dynamically adjustable features provide a novel, to the best of our knowledge, and intuitive way for tunable Cherenkov radiation in the mid-infrared range, which opens up new opportunities in designing and manufacturing tunable radiation sources in future.

9.
Nano Lett ; 22(10): 4260-4268, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35442697

ABSTRACT

Polaritons in polar biaxial crystals with extreme anisotropy offer a promising route to manipulate nanoscale light-matter interactions. The dynamic modulation of their dispersion is of great significance for future integrated nano-optics but remains challenging. Here, we report tunable topological transitions in biaxial crystals enabled by interface engineering. We theoretically demonstrate such tailored polaritons at the interface of heterostructures between graphene and α-phase molybdenum trioxide (α-MoO3). The interlayer coupling can be modulated by both the stack of graphene and α-MoO3 and the magnitude of the Fermi level in graphene enabling a dynamic topological transition. More interestingly, we found that the wavefront transition occurs at a constant Fermi level when the thickness of α-MoO3 is tuned. Furthermore, we also experimentally verify the hybrid polaritons in the graphene/α-MoO3 heterostructure with different thicknesses of α-MoO3. The interface engineering offers new insights into optical topological transitions, which may shed new light on programmable polaritonics, energy transfer, and neuromorphic photonics.

10.
Opt Express ; 30(4): 4793-4805, 2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35209453

ABSTRACT

Lead iodide (PbI2) is a van der Waals layered semiconductor with a direct bandgap in its bulk form and a hexagonal layered crystalline structure. The recently developed PbI2 nanosheets have shown great promise for high-performance optoelectronic devices, including nanolasers and photodetectors. However, despite being widely used as a precursor for perovskite materials, the optical properties of PbI2 nanomaterials remain largely unexplored. Here, we determine the nonlinear optical properties of PbI2 nanosheets by utilising nonlinear microscopy as a non-invasive optical technique. We demonstrate the nonlinearity enhancement dependent on excitonic resonances, crystalline orientation, thickness, and influence of the substrate. Our results allow for estimating the second- and third-order nonlinear susceptibilities of the nanosheets, opening new opportunities for the use of PbI2 nanosheets as nonlinear and quantum light sources.

11.
Opt Express ; 29(24): 40606-40616, 2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34809396

ABSTRACT

We proposed an one-dimensional layer-stacked photonic crystal using anisotropic materials to realize ideal type-II Weyl points. The topological transition from Dirac to Weyl points can be clearly observed by tuning the twist angle between layers. Also, on the interface between the photonic type-II Weyl material and air, gapless surface states have been demonstrated in an incomplete bulk bandgap. By breaking parameter symmetry, these ideal type-II Weyl points would transform into the non-ideal ones, exhibiting topological surface states with single group velocity. Our work may provide a new idea for the realization of photonic semimetal phases by utilizing naturally anisotropic materials.

12.
Phys Chem Chem Phys ; 23(40): 23024-23031, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34612268

ABSTRACT

Photodetectors based on intrinsic graphene can operate over a broad wavelength range with ultrafast response, but their responsivity is much lower than commercial silicon photodiodes. The combination of graphene with two-dimensional (2D) semiconductors may enhance the light absorption, but there is still a cutoff wavelength originating from the bandgap of semiconductors. Here, we report a highly responsive broadband photodetector based on the heterostructure of graphene and transition metal carbides (TMCs, more specifically Mo2C). The graphene-Mo2C heterostructure enhanced light absorption over a broad wavelength range from ultraviolet to infrared. In addition, there is very small resistance for photoexcited carriers in both graphene and Mo2C. Consequently, photodetectors based on the graphene-Mo2C heterostructure deliver a very high responsivity from visible to infrared telecommunication wavelengths.

13.
Sci Adv ; 7(41): eabj0127, 2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34623915

ABSTRACT

Phonon polaritons (PhPs)­light coupled to lattice vibrations­with in-plane hyperbolic dispersion exhibit ray-like propagation with large wave vectors and enhanced density of optical states along certain directions on a surface. As such, they have raised a surge of interest, promising unprecedented manipulation of infrared light at the nanoscale in a planar circuitry. Here, we demonstrate focusing of in-plane hyperbolic PhPs propagating along thin slabs of α-MoO3. To that end, we developed metallic nanoantennas of convex geometries for both efficient launching and focusing of the polaritons. The foci obtained exhibit enhanced near-field confinement and absorption compared to foci produced by in-plane isotropic PhPs. Foci sizes as small as λp/4.5 = λ0/50 were achieved (λp is the polariton wavelength and λ0 is the photon wavelength). Focusing of in-plane hyperbolic polaritons introduces a first and most basic building block developing planar polariton optics using in-plane anisotropic van der Waals materials.

14.
Molecules ; 26(15)2021 Jul 31.
Article in English | MEDLINE | ID: mdl-34361804

ABSTRACT

In recent years, polaritons in two-dimensional (2D) materials have gained intensive research interests and significant progress due to their extraordinary properties of light-confinement, tunable carrier concentrations by gating and low loss absorption that leads to long polariton lifetimes. With additional advantages of biocompatibility, label-free, chemical identification of biomolecules through their vibrational fingerprints, graphene and related 2D materials can be adapted as excellent platforms for future polaritonic biosensor applications. Extreme spatial light confinement in 2D materials based polaritons supports atto-molar concentration or single molecule detection. In this article, we will review the state-of-the-art infrared polaritonic-based biosensors. We first discuss the concept of polaritons, then the biosensing properties of polaritons on various 2D materials, then lastly the impending applications and future opportunities of infrared polaritonic biosensors for medical and healthcare applications.


Subject(s)
Biocompatible Materials/chemistry , Biosensing Techniques , Graphite/chemistry , Electrochemical Techniques , Humans , Nanostructures/chemistry
15.
Adv Mater ; 33(32): e2101042, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34151464

ABSTRACT

Bulk germanium as a group-IV photonic material has been widely studied due to its relatively large refractive index and broadband and low propagation loss from near-infrared to mid-infrared. Inspired by the research of graphene, the 2D counterpart of bulk germanium, germanene, has been discovered and the characteristics of Dirac electrons have been observed. However, the optical properties of germanene still remain elusive. In this work, several layers of germanene are prepared with Dirac electronic characteristics and its morphology, band structure, carrier dynamics, and nonlinear optical properties are systematically investigated. It is surprisingly found that germanene has a fast carrier-relaxation time comparable to that of graphene and a relatively large nonlinear absorption coefficient, which is an order of magnitude higher than that of graphene in the near-infrared wavelength range. Based on these findings, germanene is applied as a new saturable absorber to construct an ultrafast mode-locked laser, and sub-picosecond pulse generation in the telecommunication band is realized. The results suggest that germanene can be used as a new type of group-IV material for various nonlinear optics and photonic applications.

16.
Adv Mater ; 33(26): e2008070, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33998712

ABSTRACT

Phonon polaritons-light coupled to lattice vibrations-in polar van der Waals crystals offer unprecedented opportunities for controlling light at the nanoscale due to their anisotropic and ultralow-loss propagation. While their analog plasmon polaritons-light coupled to electron oscillations-have long been studied and exhibit interesting reflections at geometrical edges and electronic boundaries, whether phonon polaritons can be reflected by such barriers has been elusive. Here, the effective and tunable reflection of phonon polaritons at embedded interfaces formed in hydrogen-intercalated α-MoO3 flakes is elaborated upon. Without breaking geometrical continuity, such intercalation interfaces can reflect phonon polaritons with low losses, yielding the distinct phase changes of -0.8π and -0.3π associated with polariton propagation, high efficiency of 50%, and potential electrical tunability. The results point to a new approach to construct on-demand polariton reflectors, phase modulators, and retarders, which may be transplanted into building future polaritonic circuits using van der Waals crystals.

17.
ACS Nano ; 15(5): 8919-8929, 2021 May 25.
Article in English | MEDLINE | ID: mdl-33969996

ABSTRACT

Two-dimensional (2D) Bi2Sr2CaCu2O8+δ (BSCCO) is a emerming class of 2D materials with high-temperature superconductivity for which their electronic transport properties have been intensively studied. However, the optical properties, especially nonlinear optical response and the photonic and optoelectronic applications of normal state 2D Bi2Sr2CaCu2O8+δ (Bi-2212), have been largely unexplored. Here, the linear and nonlinear optical properties of mechanically exfoliated Bi-2212 thin flakes are systematically investigated. 2D Bi-2212 shows a profound plasmon absorption in near-infrared wavelength range with ultrafast carrier dynamics as well as tunable nonlinear absorption depending on the thickness. We demonstrated that 2D Bi-2212 can be applied not only as an effective mode-locker for ultrashort pulse generation but also as an active medium for infrared light detection due to its plasmon absorption. Our results may trigger follow up studies on the optical properties of 2D BSCCO and demonstrate potential opportunities for photonic and optoelectronic applications.

18.
Nano Lett ; 21(7): 3112-3119, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33764791

ABSTRACT

Surface phonon polaritons (SPhPs) in polar dielectrics offer new opportunities for infrared nanophotonics. However, bulk SPhPs inherently propagate isotropically with limited photon confinement, and how to collectively realize ultralarge confinement, in-plane hyperbolicity, and unidirectional propagation remains elusive. Here, we report an approach to solve the aforementioned issues of bulk SPhPs in one go by constructing a heterostructural interface between biaxial van der Waals material (e.g., α-MoO3) and bulk polar dielectric (e.g., SiC, AlN, and GaN). Because of anisotropy-oriented mode couplings, the hybridized SPhPs with a large confinement factor (>100) show in-plane hyperbolicity that has been switched to the orthogonal direction as compared to that in natural α-MoO3. More interestingly, this proof of concept allows steerable and unidirectional polariton excitation by suspending α-MoO3 on patterned SiC air cavities. Our finding exemplifies a generalizable framework to manipulate the flow of nanolight in many other hybrid systems consisting of anisotropic materials and polar dielectrics.

19.
Adv Mater ; 33(3): e2005732, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33275309

ABSTRACT

Atomically thin transition metal dichalcogenide crystals (TMDCs) have extraordinary optical properties that make them attractive for future optoelectronic applications. Integration of TMDCs into practical all-dielectric heterostructures hinges on the ability to passivate and protect them against necessary fabrication steps on large scales. Despite its limited scalability, encapsulation of TMDCs in hexagonal boron nitride (hBN) currently has no viable alternative for achieving high performance of the final device. Here, it is shown that the novel, ultrathin Ga2 O3 glass is an ideal centimeter-scale coating material that enhances optical performance of the monolayers and protects them against further material deposition. In particular, Ga2 O3 capping of monolayer WS2 outperforms commercial-grade hBN in both scalability and optical performance at room temperature. These properties make Ga2 O3 highly suitable for large-scale passivation and protection of monolayer TMDCs in functional heterostructures.

20.
Nat Commun ; 11(1): 6086, 2020 Nov 30.
Article in English | MEDLINE | ID: mdl-33257664

ABSTRACT

Highly confined and low-loss polaritons are known to propagate isotropically over graphene and hexagonal boron nitride in the plane, leaving limited degrees of freedom in manipulating light at the nanoscale. The emerging family of biaxial van der Waals materials, such as α-MoO3 and V2O5, support exotic polariton propagation, as their auxiliary optical axis is in the plane. Here, exploiting this strong in-plane anisotropy, we report edge-tailored hyperbolic polaritons in patterned α-MoO3 nanocavities via real-space nanoimaging. We find that the angle between the edge orientation and the crystallographic direction significantly affects the optical response, and can serve as a key tuning parameter in tailoring the polaritonic patterns. By shaping α-MoO3 nanocavities with different geometries, we observe edge-oriented and steerable hyperbolic polaritons as well as forbidden zones where the polaritons detour. The lifetime and figure of merit of the hyperbolic polaritons can be regulated by the edge aspect ratio of nanocavity.

SELECTION OF CITATIONS
SEARCH DETAIL
...