Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Publication year range
1.
Ecol Appl ; 33(1): e2731, 2023 01.
Article in English | MEDLINE | ID: mdl-36053981

ABSTRACT

Year-to-year stability in crop production is a crucial aspect of feeding a growing global population. Evidence from natural ecosystems shows that increasing plant diversity generally increases the temporal stability of productivity; however, we have little knowledge of the mechanisms by which diversity affects stability. In fact, understanding the drivers of stability is a major knowledge gap in our understanding of biodiversity and ecosystem function in general. We varied resource inputs into crop monocultures and intercropping of maize/pea and maize/rapeseed for 3 years in field experiments to create a wide range of values for temporal stability, complementarity effects, selection effects, competition, and facilitation. We correlated whole-system temporal stability in productivity with these values and the stability of competitively subordinate species and competitively dominant species in the intercrops. We then used structural equation modeling (SEM), which combines complex path models with latent variables, to estimate how interspecific interactions for water, nitrogen, and phosphorus affected the relationships between stability and these values. Intercropping treatments did not increase stability, but the wide range of stability created by our experiments allowed us to explore the relationship of many factors with stability. Complementarity correlated positively with the temporal stability of grain yield and aboveground biomass, suggesting that either facilitative interactions or niche partitioning shifted over time in ways that promoted stability. Furthermore, the temporal stability of total productivity of intercropping relied most on the stability of more productive species. However, facilitation tested by relative interaction index independently did not correlate with stability, but the temporal stability of the whole system increased as the competitive effects of competitively dominant species (pea and rapeseed) on competitively subordinate species (maize) decreased and was highest when these competitive effects were virtually zero. SEM indicated that as competition for soil nitrogen from competitively dominant species on competitively subordinate species decreased, the overall temporal stability of whole-system aboveground biomass increased. This stability then led to greater stability in grain production. Our findings indicate that complex shifts in complementarity and competitive intensities are likely to be key mechanisms that maintain temporal stability in species-diverse agriculture and, potentially, in natural systems.


Subject(s)
Agriculture , Ecosystem , Agriculture/methods , Soil/chemistry , Biomass , Biodiversity , Zea mays , Edible Grain , Nitrogen/analysis
2.
Ying Yong Sheng Tai Xue Bao ; 32(12): 4411-4418, 2021 Dec.
Article in Chinese | MEDLINE | ID: mdl-34951282

ABSTRACT

Northwest China is burdened by declining soil fertility and poor capacity of water and nutrient retention. A pot experiment was conducted to examine the effects of organic acid conditio-ners (OASC) with four application rates (0, 20, 40, and 60 g·kg-1) on soil nutrients and crop growth. Maize and common vetch were the focus crops and loessial soil and irrigated desert soil were the soil types. The results showed that OASC application reduced water evaporation loss and significantly improved soil available nutrient content, with the most obvious effects on soil phosphorus. Available phosphorus content and proportion were increased by 256.5% and 227.4%, respectively, compared with no OASC treatment. The shoot dry weights of maize and common vetch on loessial soil were initially increased with the increasing OASC application rate and were highest at the application rate of 20 g·kg-1. The values progressively decreased with increasing OASC addition rates. Total salt content was significantly increased and the rate of emergence of common vetch decreased at OASC rate exceeding 20 g·kg-1. For irrigated desert soil, the OASC application rate did not affect total salt content when maize was planted. There was significant increase in soil total salt contents when common vetch was planted and at the OASC rate of 60 g·kg-1. The shoot dry weight of common vetch and maize was highest with the OASC application rates at 40 g·kg-1 and 60 g·kg-1, respectively. The optimal OASC rate for planting common vetch and maize on loess soil was 20 g·kg-1. The application rates of 40 g·kg-1 and 60 g·kg-1 were optimal for planting common vetch and maize on irrigated desert, respectively.


Subject(s)
Fertilizers , Soil , Agriculture , China , Fertilizers/analysis , Nitrogen/analysis , Nutrients , Zea mays
3.
Ying Yong Sheng Tai Xue Bao ; 32(9): 3249-3256, 2021 Sep.
Article in Chinese | MEDLINE | ID: mdl-34658211

ABSTRACT

We examined the effects of long-term no-tillage sowing with crop stubbles on seedling emergence quality and yield of spring wheat under the three typical spring wheat planting modes of single wheat, wheat-corn intercropping and wheat-soybean intercropping in a long-term field experiment in Hexi oasis irrigated area, aiming to provide theoretical support for the efficient and sustai-nable production of spring wheat. The results showed that, compared with traditional tillage, no-tillage sowing with crop stubbles significantly decreased seedling emergence rate and emergence evenness of spring wheat in wheat-corn intercropping and wheat-soybean intercropping by 3.3%-8.6%, 9.6%-20.5%, 2.9%-8.8%, and 10.7%-61.7%, respectively. Emergence evenness was significantly increased by 14.9% in 2019, while seedling emergence rate was significantly decreased by 4.2% in 2020 under the mode of single wheat compared with traditional tillage. Seedling uniformity of spring wheat seedling stage were reduced under the three typical planting modes, including single wheat, wheat-corn intercropping and wheat-soybean intercropping. Spike number of spring wheat were equal to that of traditional tillage at harvest under the three planting modes of no-tillage sowing with crop stubbles, and the differences were not significant. Effects of seedling emergence rate of spring wheat on yield was weakened by increasing grain number per spike and 1000-grain weight of spring wheat under the three planting modes. Grain yield was significantly increased by 10.3%-12.9% (single wheat), 10.5%-11.9% (wheat-corn intercropping), and 10.3%-22.5% (wheat-soybean intercropping) at harvest, respectively. Our results indicated that no-tillage sowing with crop stubbles was the feasible tillage mode in the production process of spring wheat in Hexi oasis irrigation area with extremely serious farmland wind erosion degradation.


Subject(s)
Agriculture , Triticum , Agriculture/methods , China , Edible Grain , Zea mays
4.
Sci Rep ; 8(1): 3110, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29449595

ABSTRACT

Intercropping studies usually focus on yield advantage and interspecific interactions but few quantify temporal niche differentiation and its relationship with intercropping yield advantage. A field experiment conducted in northwest China in 2013 and 2014 examined four intercropping systems (oilseed rape/maize, oilseed rape/soybean, potato/maize, and soybean/potato) and the corresponding monocultures. Total dry matter data collected every 20 d after maize emergence were fitted to logistic models to investigate the temporal dynamics of crop growth and interspecific interactions. All four intercropping systems showed significant yield advantages. Temporal niche complementarity between intercropped species was due to differences in sowing and harvesting dates or the time taken to reach maximum daily growth rate or both. Interspecific interactions between intercropped species amplified temporal niche differentiation as indicated by postponement of the time taken to reach maximum daily growth rate of late-maturing crops (i.e. 21 to 41 days in maize associated with oilseed rape or potato). Growth trajectories of intercropped maize or soybean recovered after the oilseed rape harvest to the same values as in their monoculture on a per plant basis. Amplified niche differentiation between crop species depends on the identity of neighboring species whose relative growth rate is crucial in determining the differentiation.


Subject(s)
Agriculture/methods , Crop Production/methods , Brassica rapa/growth & development , China , Crops, Agricultural/growth & development , Fertilizers , Nitrogen/analysis , Soil/chemistry , Solanum tuberosum/growth & development , Glycine max/growth & development , Time Factors , Zea mays/growth & development
5.
Glob Chang Biol ; 21(4): 1715-26, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25216023

ABSTRACT

Intercropping, the simultaneous cultivation of multiple crop species in a single field, increases aboveground productivity due to species complementarity. We hypothesized that intercrops may have greater belowground productivity than sole crops, and sequester more soil carbon over time due to greater input of root litter. Here, we demonstrate a divergence in soil organic carbon (C) and nitrogen (N) content over 7 years in a field experiment that compared rotational strip intercrop systems and ordinary crop rotations. Soil organic C content in the top 20 cm was 4% ± 1% greater in intercrops than in sole crops, indicating a difference in C sequestration rate between intercrop and sole crop systems of 184 ± 86 kg C ha(-1) yr(-1). Soil organic N content in the top 20 cm was 11% ± 1% greater in intercrops than in sole crops, indicating a difference in N sequestration rate between intercrop and sole crop systems of 45 ± 10 kg N ha(-1) yr(-1). Total root biomass in intercrops was on average 23% greater than the average root biomass in sole crops, providing a possible mechanism for the observed divergence in soil C sequestration between sole crop and intercrop systems. A lowering of the soil δ(15) N signature suggested that increased biological N fixation and/or reduced gaseous N losses contributed to the increases in soil N in intercrop rotations with faba bean. Increases in soil N in wheat/maize intercrop pointed to contributions from a broader suite of mechanisms for N retention, e.g., complementary N uptake strategies of the intercropped plant species. Our results indicate that soil C sequestration potential of strip intercropping is similar in magnitude to that of currently recommended management practises to conserve organic matter in soil. Intercropping can contribute to multiple agroecosystem services by increased yield, better soil quality and soil C sequestration.


Subject(s)
Agriculture/methods , Carbon/chemistry , Crops, Agricultural/growth & development , Nitrogen/chemistry , Soil/chemistry , Biomass , Carbon Sequestration , Nitrogen Cycle , Plant Roots/growth & development , Plant Roots/metabolism , Seasons , Triticum/growth & development , Vicia faba/growth & development , Zea mays/growth & development
6.
PLoS One ; 9(12): e113984, 2014.
Article in English | MEDLINE | ID: mdl-25486249

ABSTRACT

Yield and nutrient acquisition advantages are frequently found in intercropping systems. However, there are few published reports on soil fertility in intercropping relative to monocultures. A field experiment was therefore established in 2009 in Gansu province, northwest China. The treatments comprised maize/faba bean, maize/soybean, maize/chickpea and maize/turnip intercropping, and their correspoding monocropping. In 2011 (the 3rd year) and 2012 (the 4th year) the yields and some soil chemical properties and enzyme activities were examined after all crop species were harvested or at later growth stages. Both grain yields and nutrient acquisition were significantly greater in all four intercropping systems than corresponding monocropping over two years. Generally, soil organic matter (OM) did not differ significantly from monocropping but did increase in maize/chickpea in 2012 and maize/turnip in both years. Soil total N (TN) did not differ between intercropping and monocropping in either year with the sole exception of maize/faba bean intercropping receiving 80 kg P ha-1 in 2011. Intercropping significantly reduced soil Olsen-P only in 2012, soil exchangeable K in both years, soil cation exchangeable capacity (CEC) in 2012, and soil pH in 2012. In the majority of cases soil enzyme activities did not differ across all the cropping systems at different P application rates compared to monocrops, with the exception of soil acid phosphatase activity which was higher in maize/legume intercropping than in the corresponding monocrops at 40 kg ha-1 P in 2011. P fertilization can alleviate the decline in soil Olsen-P and in soil CEC to some extent. In summary, intercropping enhanced productivity and maintained the majority of soil fertility properties for at least three to four years, especially at suitable P application rates. The results indicate that maize-based intercropping may be an efficient cropping system for sustainable agriculture with carefully managed fertilizer inputs.


Subject(s)
Agriculture/methods , Crops, Agricultural , Soil , China , Crops, Agricultural/growth & development , Edible Grain , Fertilizers , Soil/chemistry
7.
Sci China Life Sci ; 56(9): 823-34, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23900569

ABSTRACT

Most research on micronutrients in maize has focused on maize grown as a monocrop. The aim of this study was to determine the effects of intercropping on the concentrations of micronutrients in maize grain and their acquisition via the shoot. We conducted field experiments to investigate the effects of intercropping with turnip (Brassica campestris L.), faba bean (Vicia faba L.), chickpea (Cicer arietinum L.), and soybean (Glycine max L.) on the iron (Fe), manganese (Mn), copper (Cu) and zinc (Zn) concentrations in the grain and their acquisition via the above-ground shoots of maize (Zea mays L.). Compared with monocropped maize grain, the grain of maize intercropped with legumes showed lower concentrations of Fe, Mn, Cu, and Zn and lower values of their corresponding harvest indexes. The micronutrient concentrations and harvest indexes in grain of maize intercropped with turnip were the same as those in monocropped maize grain. Intercropping stimulated the above-ground maize shoot acquisition of Fe, Mn, Cu and Zn, when averaged over different phosphorus (P) application rates. To our knowledge, this is the first report on the effects of intercropping on micronutrient concentrations in maize grain and on micronutrients acquisition via maize shoots (straw+grain). The maize grain Fe and Cu concentrations, but not Mn and Zn concentrations, were negatively correlated with maize grain yields. The concentrations of Fe, Mn, Cu, and Zn in maize grain were positively correlated with their corresponding harvest indexes. The decreased Fe, Mn, Cu, and Zn concentrations in grain of maize intercropped with legumes were attributed to reduced translocation of Fe, Mn, Cu, and Zn from vegetative tissues to grains. This may also be related to the delayed senescence of maize plants intercropped with legumes. We conclude that turnip/maize intercropping is beneficial to obtain high maize grain yield without decreased concentrations of Fe, Mn, Cu, and Zn in the grain. Further research is required to clarify the mechanisms underlying the changes in micronutrient concentrations in grain of intercropped maize.


Subject(s)
Brassica napus/metabolism , Crops, Agricultural/metabolism , Fabaceae/metabolism , Metals/metabolism , Zea mays/metabolism
8.
Proc Natl Acad Sci U S A ; 104(27): 11192-6, 2007 Jul 03.
Article in English | MEDLINE | ID: mdl-17592130

ABSTRACT

Intercropping, which grows at least two crop species on the same pieces of land at the same time, can increase grain yields greatly. Legume-grass intercrops are known to overyield because of legume nitrogen fixation. However, many agricultural soils are deficient in phosphorus. Here we show that a new mechanism of overyielding, in which phosphorus mobilized by one crop species increases the growth of a second crop species grown in alternate rows, led to large yield increases on phosphorus-deficient soils. In 4 years of field experiments, maize (Zea mays L.) overyielded by 43% and faba bean (Vicia faba L.) overyielded by 26% when intercropped on a low-phosphorus but high-nitrogen soil. We found that overyielding of maize was attributable to below-ground interactions between faba bean and maize in another field experiment. Intercropping with faba bean improved maize grain yield significantly and above-ground biomass marginally significantly, compared with maize grown with wheat, at lower rates of P fertilizer application (<75 kg of P(2)O(5) per hectare), and not significantly at high rate of P application (>112.5 kg of P(2)O(5) per hectare). By using permeable and impermeable root barriers, we found that maize overyielding resulted from its uptake of phosphorus mobilized by the acidification of the rhizosphere via faba bean root release of organic acids and protons. Faba bean overyielded because its growth season and rooting depth differed from maize. The large increase in yields from intercropping on low-phosphorus soils is likely to be especially important on heavily weathered soils.


Subject(s)
Agriculture/methods , Biodiversity , Phosphorus/metabolism , Soil/analysis , Agriculture/economics , Nitrogen/metabolism , Phosphorus/deficiency , Plant Roots/metabolism , Solubility , Vicia faba/growth & development , Vicia faba/metabolism , Vicia faba/physiology , Zea mays/growth & development , Zea mays/metabolism , Zea mays/physiology
9.
Oecologia ; 147(2): 280-90, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16211394

ABSTRACT

Even though ecologists and agronomists have considered the spatial root distribution of plants to be important for interspecific interactions in natural and agricultural ecosystems, few experimental studies have quantified patterns of root distribution dynamics and their impacts on interspecific interactions. A field experiment was conducted to investigate the relationship between root distribution and interspecific interactions between intercropped plants. Roots were sampled twice by auger and twice by the monolith method in wheat (Triticum aestivum L.)/maize (Zea mays L.) and faba bean (Vicia faba L.)/maize intercropping and in sole wheat, maize, and faba bean up to 100 cm depth in the soil profile. The results showed that the roots of intercropped wheat spread under maize plants, and had much greater root length density (RLD) at all soil depths than sole wheat. The roots of maize intercropped with wheat were limited laterally, but had a greater RLD than sole-cropped maize. The RLD of maize intercropped with faba bean at different soil depths was influenced by intercropping to a smaller extent compared to maize intercropped with wheat. Faba bean had a relatively shallow root distribution, and the roots of intercropped maize spread underneath them. The results support the hypotheses that the overyielding of species showing benefit in the asymmetric interspecific facilitation results from greater lateral deployment of roots and increased RLD, and that compatibility of the spatial root distribution of intercropped species contributes to symmetric interspecific facilitation in the faba bean/maize intercropping.


Subject(s)
Plant Roots/growth & development , Triticum/growth & development , Vicia faba/growth & development , Zea mays/growth & development , Agriculture
SELECTION OF CITATIONS
SEARCH DETAIL
...