Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Am J Stem Cells ; 13(2): 37-58, 2024.
Article in English | MEDLINE | ID: mdl-38765802

ABSTRACT

Recent studies demonstrated that mesenchymal stem cells (MSCs) are important for the cell-based therapy of diseased or injured lung due to their immunomodulatory and regenerative properties as well as limited side effects in experimental animal models. Preclinical studies have shown that MSCs have also a remarkable effect on the immune cells, which play major roles in the pathogenesis of multiple lung diseases, by modulating their activity, proliferation, and functions. In addition, MSCs can inhibit both the infiltrated immune cells and detrimental immune responses in the lung and can be used in treating lung diseases caused by a virus infection such as Tuberculosis and SARS-COV-2. Moreover, MSCs are a source for alveolar epithelial cells such as type 2 (AT2) cells. These MSC-derived functional AT2-like cells can be used to treat and diminish serious lung disorders, including acute lung injury, asthma, chronic obstructive pulmonary disease (COPD), and pulmonary fibrosis in animal models. As an alternative MSC-based therapy, extracellular vesicles that are derived from MSC-derived can be employed in regenerative medicine. Herein, we discussed the key research findings from recent clinical and preclinical studies on the functions of MSCs in treating some common and well-studied lung diseases. We also discussed the mechanisms underlying MSC-based therapy of well-studied lung diseases, and the recent employment of MSCs in both the attenuation of lung injury/inflammation and promotion of the regeneration of lung alveolar cells after injury. Finally, we described the role of MSC-based therapy in treating major pulmonary diseases such as pneumonia, COPD, asthma, and idiopathic pulmonary fibrosis (IPF).

2.
Environ Res ; 252(Pt 2): 118925, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38615795

ABSTRACT

Excessive levels of nitrate nitrogen (NO3--N) could lead to ecological issues, particularly in the Yarlung Tsangpo River (YTR) region located on the Qinghai Tibet Plateau. Therefore, it is crucial to understand the fate and sources of nitrogen to facilitate pollution mitigation efforts. Herein, multiple isotopes and source resolution models were applied to analyze key transformation processes and quantify the sources of NO3-. The δ15N-NO3- and δ18O-NO3- isotopic compositions in the YTR varied between 1.23‰ and 13.64‰ and -7.88‰-11.19‰, respectively. The NO3--N concentrations varied from 0.08 to 0.86 mg/L in the dry season and 0.20-1.19 mg/L during the wet season. Nitrification remained the primary process for nitrogen transformation in both seasons. However, the wet season had a widespread effect on increasing nitrate levels, while denitrification had a limited ability to reduce nitrate. The elevated nitrate concentrations during the flood season were caused by increased release of NO3- from manure & sewage (M&S) and chemical fertilizers (CF). Future endeavors should prioritize enhancing management strategies to improve the utilization efficiency of CF and hinder the direct entry of untreated sewage into the water system.


Subject(s)
Bayes Theorem , Environmental Monitoring , Nitrates , Rivers , Water Pollutants, Chemical , Nitrates/analysis , Rivers/chemistry , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Tibet , Seasons , Denitrification
4.
Bioresour Technol ; 382: 129171, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37196740

ABSTRACT

ß-Farnesene is a sesquiterpene commonly found in essential oils of plants, with applications spanning from agricultural pest control and biofuels to industrial chemicals. The use of renewable substrates in microbial cell factories offers a sustainable approach to ß-farnesene biosynthesis. In this study, malic enzyme from Mucor circinelloides was examined for NADPH regeneration, concomitant with the augmentation of cytosolic acetyl-CoA supply by expressing ATP-citrate lyase from Mus musculus and manipulating the citrate pathway via AMP deaminase and isocitrate dehydrogenase. Carbon flux was modulated through the elimination of native 6-phosphofructokinase, while the incorporation of an exogenous non-oxidative glycolysis pathway served to bridge the pentose phosphate pathway with the mevalonate pathway. The resulting orthogonal precursor supply pathway facilitated ß-farnesene production, reaching 810 mg/L in shake-flask fermentation. Employing optimal fermentation conditions and feeding strategy, a titer of 28.9 g/L of ß-farnesene was attained in a 2 L bioreactor.


Subject(s)
Sesquiterpenes , Yarrowia , Animals , Mice , Yarrowia/metabolism , Fermentation , Bioreactors , Sesquiterpenes/metabolism , Metabolic Engineering/methods
5.
Ecotoxicol Environ Saf ; 256: 114907, 2023 May.
Article in English | MEDLINE | ID: mdl-37059014

ABSTRACT

The construction of the reservoir has changed the nitrogen migration and transformation processes in the river, and a large amount of sediment deposition in the reservoir may also lead to the spatial differentiation of complete ammonia oxidation (comammox) bacteria. The study investigated the abundance and diversity of comammox bacteria in the sediments of three cascade reservoirs, namely, Xiaowan, Manwan, and Nuozhadu on the Lancang River in China. In these reservoirs, the average amoA gene abundance of clade A and clade B of comammox bacteria, ammonia-oxidizing archaea (AOA), and ammonia-oxidizing bacteria (AOB) was 4.16 ± 0.85 × 105, 1.15 ± 0.33 × 105, 7.39 ± 2.31 × 104, and 3.28 ± 0.99 × 105 copies g-1, respectively. The abundance of clade A was higher than that of other ammonia oxidizing microorganisms. The spatial variation of comammox bacteria abundance differed among different reservoirs, but the spatial variation trends of the two clades of comammox bacteria in the same reservoir were similar. At each sampling point, clade A1, clade A2, and clade B coexisted, and clade A2 was usually the dominant species. The connection between comammox bacteria in the pre-dam sediments was looser than that in non-pre-dam sediments, and comammox bacteria in pre-dam sediments exhibited a simpler network structure. The main factor affecting comammox bacteria abundance was NH4+-N, while altitude, temperature, and conductivity of overlying water were the main factors affecting comammox bacteria diversity. Environmental changes caused by differences in the spatial distribution of these cascade reservoirs may be the main driver of the changes of community composition and abundance of comammox bacteria. This study confirms that the construction of cascade reservoirs results in niche spatial differentiation of comammox bacteria.


Subject(s)
Ammonia , Rivers , Nitrification , Oxidation-Reduction , Bacteria/genetics , Archaea/genetics , Phylogeny
7.
Sci Total Environ ; 866: 161422, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-36621487

ABSTRACT

The Three Gorges Reservoir (TGR) is one of the largest hydropower projects around the world which greatly alters the ecological function of the original ecosystem. The riparian zone of TGR is subject to a frequent fluctuation of water level, leading to severe nitrogen loss by leaching. Cyndon dactylon, a perennial stress tolerant plant, is one of the dominant plant species in the riparian zone of TGR. The underlying mechanism that C. dactylon can survive the nitrogen limitation has been under debate. In this study, we sampled the plant tissues of C. dactylon and the surrounding soils across different water levels and seasons in the riparian zone of TGR to explore the possible strategy for them to mining nitrogen. Our study found that the C. dactylon in the TGR riparian zone had endophytic nitrogen-fixing bacteria, particularly enriched in the plant foliage. The abundance of endophytic nitrogen-fixing bacteria was significantly negatively correlated with soil ammonia, nitrate, and organic matter, and significantly positively correlated with total phosphorous and moisture content. The endophytic nitrogen-fixing bacteria in C. dactylon were highly diverse, with Proteobacteria as the main dominant genera. The mutual cooperation mode among bacterial species made the endophytic nitrogen-fixing bacteria community of C. dactylon more resilient to environmental pressure, thus more readily adapting to conditions of repeated long-term flooding in the riparian zone of the TGR.


Subject(s)
Ecosystem , Nitrogen Fixation , Soil , Water , Nitrogen/analysis , Plants , China
8.
Sci Rep ; 12(1): 6820, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35474096

ABSTRACT

Complete ammonia oxidizer (Comammox) can complete the whole nitrification process independently, whose niche differentiation is important guarantee for its survival and ecological function. This study investigated the niche differentiation of comammox Nitrospira in the sediments of three typical tributaries of the Three Gorges Reservoir (TGR). Clade A and clade B of comammox Nitrospira coexisted in all sampling sites simultaneously. The amoA gene abundance of clade A and B was gradually increased or decreased along the flow path of the three tributaries with obvious spatial differentiation. The amoA gene abundance of comammox Nitrospira clade A (6.36 × 103 - 5.06 × 104 copies g-1 dry sediment) was higher than that of clade B (6.26 × 102 - 6.27 × 103 copies g-1 dry sediment), and the clade A amoA gene abundance was one order of magnitude higher than that of AOA (7.24 × 102 - 6.89 × 103 copies g-1 dry sediment) and AOB (1.44 × 102 - 1.46 × 103 copies g-1 dry sediment). A significant positive correlation was observed between comammox Nitrospira clade A amoA gene abundance and flow distance (P < 0.05). The number of operational taxonomic units (OTUs) in two sub-clades of clade A accounted for the majority in different tributaries, indicating that clade A also had population differentiation among different tributaries. This study revealed that comammox Nitrospira in the sediments of TGR tributaries have niche differentiation and clade A.2 played a more crucial role in comammox Nitrospira community.


Subject(s)
Archaea , Bacteria , Archaea/genetics , Bacteria/genetics , Nitrification , Oxidation-Reduction , Phylogeny
9.
Plant Mol Biol ; 108(3): 157-173, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35032250

ABSTRACT

KEY MESSAGE: Domestication traits particularly fruit size and plant architecture and flowering are critical in transforming a progenitor's wild stature into a super improved plant. The latest advancements in the CRISPR system, as well as its rapid adoption, are speeding up plant breeding. Solanaceae has a varied range of important crops, with a few model crops, such as tomato and, more recently, groundcherry, serving as a foundation for developing molecular techniques, genome editing tools, and establishing standards for other crops. Domestication traits in agricultural plants are quantified and widely adopted under modern plant breeding to improve small-fruited and bushy crop species like goji berry. The molecular mechanisms of the FW2.2, FW3.2, FW11.3, FAS/CLV3, LC/WUS, SP, SP5G, and CRISPR genome editing technology have been described in detail here. Furthermore, special focus has been placed on CRISPR gene editing achievements for revolutionizing Solanaceae breeding and changing the overall crop landscape. This review seeks to provide a thorough overview of the CRISPR technique's ongoing advancements, particularly in Solanaceae, in terms of domesticated features, future prospects, and regulatory risks. We believe that this vigorous discussion will lead to a broader understanding of CRISPR gene editing as a tool for achieving key breeding goals in other Solanaceae minor crops with significant industrial value.


Subject(s)
Breeding , CRISPR-Cas Systems , Gene Expression Regulation, Plant/physiology , Genetic Engineering , Plant Proteins/metabolism , Solanaceae/genetics , Plant Proteins/genetics
10.
Nanoscale ; 11(40): 18866-18873, 2019 Oct 28.
Article in English | MEDLINE | ID: mdl-31596300

ABSTRACT

In this study, a bottleneck was overcome for direct alcohol fuel cells using state-of-the-art PtRu catalysts for alcohol fuel oxidation. Herein, a core-shell structured PtRu catalyst system based on the emerging promoter FeP was developed that showed excellent catalytic performance for the oxidation of alcohol fuels. The surface spectrometric analysis and morphology observation confirmed the formation of a nanointerface of the PtRu shell and FeP core hybrid catalyst (PtRu@FeP), and efficient ligand effects and electronic effects were found to result from the noble metal active sites and adjacent promoter in the core-shell structure. The facile formation of oxygen-containing species and the strong electronic effects could activate the Pt active sites, leading to high catalytic performance. High anti-CO poisoning ability was found for this catalyst system when compared with the case of the benchmark commercial PtRu/C catalyst (110 mV less and 60 mV less as evaluated by the peak and onset potentials for CO oxidation, respectively). The PtRu@FeP catalysts also exhibited much higher catalytic activity and stability when compared with commercial and home-made PtRu/C catalysts; specifically, the peak current density of the PtRu@FeP 1 : 1 catalyst was about 2 and 3 times higher than those of the commercial PtRu/C catalyst and home-made PtRu/C for the oxidation of the alcohol fuels methanol and ethanol; moreover, high catalytic efficiency, improved by 2 times, was found, as expressed by the specific activity. Excellent catalytic stability as evaluated by 1000 cycles of cyclic voltammetry measurements was also demonstrated for the PtRu@FeP catalysts. The high catalytic performance could be attributed to the intimate nanointerface contact of the core-shell structured PtRu shell over the FeP core via a bi-functional catalytic mechanism and electronic effects based on the ligand effect in this catalyst system. The current study is a significant step to increase the PtRu catalytic performance via nanointerface construction by a core-shell structure on a novel promoter for direct alcohol fuel cells.

11.
Chem Commun (Camb) ; 55(63): 9347-9350, 2019 Aug 14.
Article in English | MEDLINE | ID: mdl-31313761

ABSTRACT

An Fe doped NiTe bulk crystal was demonstrated as a robust catalyst for the electrochemical oxygen evolution reaction. The promotion effect at least can be correlated with the significant electronic effect and the formation of lattice oxygen via bimetallic synergy by Fe doping.

12.
Sci Total Environ ; 658: 132-140, 2019 Mar 25.
Article in English | MEDLINE | ID: mdl-30577012

ABSTRACT

Based on a quantitative analysis of nitrate concentrations, the nitrate sources and temporal variability of the rivers, lakes, and wetlands of Tibet were assessed for the first time using dual isotope technology. Water samples were collected once in July 2017 for analysis of nitrate concentration and isotopic composition. The overall values of δ15N-NO3- and δ18O-NO3- ranged from +1.8‰ to +23.0‰, and from -6.3‰ to +22.2‰ respectively. Duel isotopic composition suggested that nitrification of soil organic nitrogen was the main source of nitrate in the Yalu Tsangpo River. Furthermore, anthropogenic nitrogen inputs become more important in downstream than upstream because of intensive agricultural activities and urban input. In the rivers of the Ngari District, nitrate is mainly derived from desert deposits, manure and sewage, and chemical fertilisers. Different rivers show different characteristics of nitrate sources depending on the location, topography, landform, and climate of the river basins. Animal manure, nitrification of soil organic matter, and desert deposits are mainly responsible for the shifting of nitrate isotopic signatures in lakes, which are minimally affected by human activities. In wetlands, biological nitrification and denitrification could be the main processes of nitrogen migration and transformation. These results provide useful information in revealing the fate of nitrate in different aquatic ecosystems and different areas of Tibet.

13.
Water Sci Technol ; 73(7): 1619-27, 2016.
Article in English | MEDLINE | ID: mdl-27054733

ABSTRACT

A new terpolymer named ß-CD-MA-SSS was produced using free-radical polymerization of ß-cyclodextrin (ß-CD), maleic-anhydride (MA) and sodium-styrene-sulfonate (SSS) as monomers, with potassium persulfate (KPS) as initiator. Its performance as a scale inhibitor to prevent deposition of calcium carbonate (CaCO3) has been investigated. Experimental results demonstrated that ß-CD-MA-SSS performed excellent scale inhibition and exhibited a high conversion rate under the following conditions: initiator consisting of 6%, molar ratio of reaction monomers SSS:MA = 0.8:1, MA:ß-CD = 6:1, reaction temperature of 80 °C, reaction time of 6 h, and dropping time of 40 min when MA was dosed as a substrate, and SSS and KPS were dosed as dropping reactants simultaneously. Use of a Fourier transform infrared spectrometer for this inhibitor showed that the polymerization reaction had taken place with the reaction monomers under the above specified conditions. Scanning electron microscopy indicated that the ß-CD-MA-SSS had a strong chelating ability for calcium (Ca(2+)) and a good dispersion ability for calcium carbonate (CaCO3).


Subject(s)
Maleic Anhydrides/chemistry , Polymers/chemistry , Polystyrenes/chemical synthesis , Sulfonic Acids/chemistry , beta-Cyclodextrins/chemistry , Catalysis , Microscopy, Electron, Scanning , Polymerization , Potassium Compounds/chemistry , Sulfates/chemistry , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...