Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Fungal Biol ; 127(5): 1043-1052, 2023 05.
Article in English | MEDLINE | ID: mdl-37142363

ABSTRACT

Macrophomina phaseolina (Tassi) Goid. is a fungal pathogen that causes root and stem rot in several economically important crops. However, most of disease control strategies have shown limited effectiveness. Despite its impact on agriculture, molecular mechanisms involved in the interaction with host plant remains poorly understood. Nevertheless, it has been proven that fungal pathogens secrete a variety of proteins and metabolites to successfully infect their host plants. In this study, a proteomic analysis of proteins secreted by M. phaseolina in culture media supplemented with soybean leaf infusion was performed. A total of 250 proteins were identified with a predominance of hydrolytic enzymes. Plant cell wall degrading enzymes together peptidases were found, probably involved in the infection process. Predicted effector proteins were also found that could induce plant cell death or suppress plant immune response. Some of the putative effectors presented similarities to known fungal virulence factors. Expression analysis of ten selected protein-coding genes showed that these genes are induced during host tissue infection and suggested their participation in the infection process. The identification of secreted proteins of M. phaseolina could be used to improve the understanding of the biology and pathogenesis of this fungus. Although leaf infusion was able to induce changes at the proteome level, it is necessary to study the changes induced under conditions that mimic the natural infection process of the soil-borne pathogen M. phaseolina to identify virulence factors.


Subject(s)
Glycine max , Proteomics , Glycine max/microbiology , Secretome , Plant Leaves , Virulence Factors/genetics , Plant Diseases/microbiology
2.
Bioorg Chem ; 127: 105979, 2022 10.
Article in English | MEDLINE | ID: mdl-35753117

ABSTRACT

Chemical epigenetic manipulation of Botrytis cinerea strain B05.10 with the histone deacetylase inhibitor SAHA led to the isolation of a new cryptic metabolite, botrycinereic acid (22a). This compound was also overproduced by inactivating the stc2 gene, which encodes an unknown sesquiterpene cyclase. Its structure and absolute configuration were determined by extensive spectroscopic NMR and HRESIMS studies, and electronic circular dichroism calculations. Its biosynthesis was studied by feeding 2H and 13C isotopically labeled precursors to B. cinerea Δstc2 mutant. A detailed analysis of the labeling and coupling patterns into botrycinereic acid (22a) revealed that this compound derives from l-phenylalanine and l-leucine.


Subject(s)
Botrytis
3.
Molecules ; 27(5)2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35268843

ABSTRACT

The COVID-19 pandemic has led to the search for new molecules with antiviral activity against SARS-CoV-2. The entry of the virus into the cell is one of the main targets for inhibiting SARS-CoV-2 infection. Natural products are an important source of new therapeutic alternatives against diseases. Pseudotyped viruses allow the study of SARS-CoV-2 viral entry inhibitors, and due to their simplicity, they allow the screening of a large number of antiviral candidates in Biosafety Level 2 facilities. We used pseudotyped HIV-1 with the D614G SARS-CoV-2 spike glycoprotein to test its ability to infect ACE2-expressing HEK 293T cells in the presence of diverse natural products, including 21 plant extracts, 7 essential oils, and 13 compounds from plants and fungi. The 50% cytotoxic concentration (CC50) was evaluated using the resazurin method. From these analyses, we determined the inhibitory activity of the extract of Stachytarpheta cayennensis, which had a half-maximal inhibitory concentration (IC50) of 91.65 µg/mL, a CC50 of 693.5 µg/mL, and a selectivity index (SI) of 7.57, indicating its potential use as an inhibitor of SARS-CoV-2 entry. Moreover, our work indicates the usefulness of the pseudotyped-virus system in the screening of SARS-CoV-2 entry inhibitors.


Subject(s)
Antiviral Agents/pharmacology , Biological Products/chemistry , Virus Internalization/drug effects , Actinobacteria/chemistry , Actinobacteria/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Antiviral Agents/therapeutic use , Biological Products/metabolism , Biological Products/pharmacology , Biological Products/therapeutic use , COVID-19/virology , HEK293 Cells , High-Throughput Screening Assays/methods , Humans , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/therapeutic use , Plant Extracts/chemistry , Plant Extracts/metabolism , Plant Extracts/pharmacology , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/metabolism , COVID-19 Drug Treatment
4.
Molecules ; 24(20)2019 Oct 22.
Article in English | MEDLINE | ID: mdl-31652666

ABSTRACT

Trichothecene mycotoxins are recognized as highly bioactive compounds that can be used in the design of new useful bioactive molecules. In Trichoderma brevicompactum, the first specific step in trichothecene biosynthesis is carried out by a terpene cyclase, trichodiene synthase, that catalyzes the conversion of farnesyl diphosphate to trichodiene and is encoded by the tri5 gene. Overexpression of tri5 resulted in increased levels of trichodermin, a trichothecene-type toxin, which is a valuable tool in preparing new molecules with a trichothecene skeleton. In this work, we developed the hemisynthesis of trichodermin and trichodermol derivatives in order to evaluate their antimicrobial and cytotoxic activities and to study the chemo-modulation of their bioactivity. Some derivatives with a short chain at the C-4 position displayed selective antimicrobial activity against Candida albicans and they showed MIC values similar to those displayed by trichodermin. It is important to highlight the cytotoxic selectivity observed for compounds 9, 13, and 15, which presented average IC50 values of 2 µg/mL and were cytotoxic against tumorigenic cell line MCF-7 (breast carcinoma) and not against Fa2N4 (non-tumoral immortalized human hepatocytes).


Subject(s)
Trichodermin/analogs & derivatives , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/metabolism , Antifungal Agents/pharmacology , Candida albicans/drug effects , Cell Line , Female , Hepatocytes/drug effects , Humans , MCF-7 Cells , Mycotoxins/pharmacology , Rabbits , Trichoderma/enzymology , Trichoderma/genetics , Trichoderma/metabolism , Trichodermin/chemical synthesis , Trichodermin/chemistry , Trichodermin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...