Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 36(2)2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37793396

ABSTRACT

The energy distributions of scattered and re-emitted low-energy positrons from a W(100) surface were measured as a function of incident positron energy from 0 to 25 eV. Given that tungsten has a negative work function of about -3 eV for positrons, one can envisage three scenarios of very low-energy positron scattering from such a surface. First, a positron approaching the sample surface with energy say 1 eV above the vacuum level will see a potential barrier of about 2 eV height and will be reflected back to the vacuum. Second, when the energy of incident positrons increases up to the top of the surface potential barrier (positron work function), they start entering the solid and, therefore, the reflectivity of positrons from the surface reduces. Positrons entering the solid are thermalised within few picoseconds and have a chance to escape back to the vacuum with kinetic energy about 3 eV above the vacuum level undergoing so-calledre-emission. Third, coherent scattering of low-energy positrons may occur on the crystal surface, i.e. positron diffraction. All the three scenarios of low-energy positrons scattering are studied here experimentally. Measured spectra are very sensitive to the surface conditions of the sample: they change dramatically after surface oxidation or thin film deposition.

2.
Nanotechnology ; 31(21): 215301, 2020 May 22.
Article in English | MEDLINE | ID: mdl-31978916

ABSTRACT

In this paper we demonstrate a nanofabrication technique based on local ion irradiation of silicon dioxide with a focused helium ion beam. The wet etching of silicon dioxide irradiated with a focused helium ion beam is described in a two-dimensional case both numerically and experimentally. We suggest a model for the etching process based on the distribution of ion induced defects in the irradiated material. The profile of the surface of the etched silicon dioxide is simulated and compared with the results from scanning electron microscopy. Fabrication of a suspended nanostring with a diameter of less than 20 nm by means of etching ion-irradiated material is demonstrated.

SELECTION OF CITATIONS
SEARCH DETAIL
...