Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38791516

ABSTRACT

Relapse to alcohol abuse, often caused by cue-induced alcohol craving, is a major challenge in alcohol addiction treatment. Therefore, disrupting the cue-alcohol memories can suppress relapse. Upon retrieval, memories transiently destabilize before they reconsolidate in a process that requires protein synthesis. Evidence suggests that the mammalian target of rapamycin complex 1 (mTORC1), governing the translation of a subset of dendritic proteins, is crucial for memory reconsolidation. Here, we explored the involvement of two regulatory pathways of mTORC1, phosphoinositide 3-kinase (PI3K)-AKT and extracellular regulated kinase 1/2 (ERK1/2), in the reconsolidation process in a rat (Wistar) model of alcohol self-administration. We found that retrieval of alcohol memories using an odor-taste cue increased ERK1/2 activation in the amygdala, while the PI3K-AKT pathway remained unaffected. Importantly, ERK1/2 inhibition after alcohol memory retrieval impaired alcohol-memory reconsolidation and led to long-lasting relapse suppression. Attenuation of relapse was also induced by post-retrieval administration of lacosamide, an inhibitor of collapsin response mediator protein-2 (CRMP2)-a translational product of mTORC1. Together, our findings indicate the crucial role of ERK1/2 and CRMP2 in the reconsolidation of alcohol memories, with their inhibition as potential treatment targets for relapse prevention.


Subject(s)
Intercellular Signaling Peptides and Proteins , Nerve Tissue Proteins , Animals , Rats , Male , Intercellular Signaling Peptides and Proteins/metabolism , Nerve Tissue Proteins/metabolism , Rats, Wistar , Memory/drug effects , Mechanistic Target of Rapamycin Complex 1/metabolism , Ethanol , Alcoholism/metabolism , Alcoholism/drug therapy , MAP Kinase Signaling System/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Recurrence , Amygdala/metabolism , Amygdala/drug effects , Memory Consolidation/drug effects , Mitogen-Activated Protein Kinase 3/metabolism , Self Administration , Mitogen-Activated Protein Kinase 1/metabolism , Phosphatidylinositol 3-Kinases/metabolism
2.
Eur J Neurosci ; 59(7): 1519-1535, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38185886

ABSTRACT

Harmful alcohol consumption is a major socioeconomic burden to the health system, as it can be the cause of mortality of heavy alcohol drinkers. The dopaminergic (DAergic) system is thought to play an important role in the pathogenesis of alcohol drinking behaviour; however, its exact role remains elusive. Fibroblast growth factor 2 (FGF-2), a neurotrophic factor, associated with both the DAergic system and alcohol consumption, may play an important role in DAergic neuroadaptations during alcohol abuse. Within this study, we aimed to clarify the role of endogenous FGF-2 on the DAergic system and whether there is a possible link to alcohol consumption. We found that lack of FGF-2 reduces the alcohol intake of mice. Transcriptome analysis of DAergic neurons revealed that FGF-2 knockout (FGF-2 KO) shifts the molecular fingerprint of midbrain dopaminergic (mDA) neurons to DA subtypes of the ventral tegmental area (VTA). In line with this, proteomic changes predominantly appear also in the VTA. Interestingly, these changes led to an altered regulation of the FGF-2 signalling cascades and DAergic pathways in a region-specific manner, which was only marginally affected by voluntary alcohol consumption. Thus, lack of FGF-2 not only affects the gene expression but also the proteome of specific brain regions of mDA neurons. Our study provides new insights into the neuroadaptations of the DAergic system during alcohol abuse and, therefore, comprises novel targets for future pharmacological interventions.


Subject(s)
Alcoholism , Ventral Tegmental Area , Mice , Animals , Ventral Tegmental Area/metabolism , Dopaminergic Neurons/metabolism , Fibroblast Growth Factor 2/metabolism , Alcoholism/genetics , Alcoholism/metabolism , Proteomics , Alcohol Drinking
3.
Behav Res Methods ; 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37989835

ABSTRACT

Habits are a prominent feature of both adaptive and maladaptive behavior. Yet, despite substantial research efforts, there are currently no well-established experimental procedures for habit induction in humans. It is likely that laboratory experimental settings, as well as the session-based structure typically used in controlled experiments (also outside the lab), impose serious constraints on studying habits and other effects that are sensitive to context, motivation, and training duration and frequency. To overcome these challenges, we devised a unique real-world free-operant task structure, implemented through a novel smartphone application, whereby participants could freely enter the app (24 hours a day, 7 days a week) to win rewards. This procedure is free of typical laboratory constraints, yet well controlled. Using the canonical sensitivity to outcome devaluation criterion, we successfully demonstrated habit formation as a function of training duration, a long-standing challenge in the field. Additionally, we show a positive relationship between multiple facets of engagement/motivation and goal-directedness. We suggest that our novel paradigm can be used to study the neurobehavioral and psychological mechanism underlying habits in humans. Moreover, the real-world free-operant framework can potentially be used to examine other instrumental behavior-related questions, with greater face validity in naturalistic conditions.

4.
Drug Alcohol Depend ; 248: 109920, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37224676

ABSTRACT

Fibroblast growth factor 2 (FGF2) is involved in the development and maintenance of the brain dopamine system. We previously showed that alcohol exposure alters the expression of FGF2 and its receptor, FGF receptor 1 (FGFR1) in mesolimbic and nigrostriatal brain regions, and that FGF2 is a positive regulator of alcohol drinking. Here, we determined the effects of FGF2 and of FGFR1 inhibition on alcohol consumption, seeking and relapse, using a rat operant self-administration paradigm. In addition, we characterized the effects of FGF2-FGFR1 activation and inhibition on mesolimbic and nigrostriatal dopamine neuron activation using in vivo electrophysiology. We found that recombinant FGF2 (rFGF2) increased the firing rate and burst firing activity of dopaminergic neurons in the mesolimbic and nigrostriatal systems and led to increased operant alcohol self-administration. In contrast, the FGFR1 inhibitor PD173074 suppressed the firing rate of these dopaminergic neurons, and reduced operant alcohol self-administration. Alcohol seeking behavior was not affected by PD173074, but this FGFR1 inhibitor reduced post-abstinence relapse to alcohol consumption, albeit only in male rats. The latter was paralleled by the increased potency and efficacy of PD173074 in inhibiting dopamine neuron firing. Together, our findings suggest that targeting the FGF2-FGFR1 pathway can reduce alcohol consumption, possibly via altering mesolimbic and nigrostriatal neuronal activity.


Subject(s)
Dopamine , Fibroblast Growth Factor 2 , Rats , Male , Animals , Dopamine/metabolism , Fibroblast Growth Factor 2/pharmacology , Ethanol/pharmacology , Ethanol/metabolism , Alcohol Drinking/genetics , Recurrence , Ventral Tegmental Area
5.
Int J Mol Sci ; 24(4)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36834747

ABSTRACT

Alcohol abuse accounts for 3.3 million deaths annually, rendering it a global health issue. Recently, fibroblast growth factor 2 (FGF-2) and its target, fibroblast growth factor receptor 1 (FGFR1), were discovered to positively regulate alcohol-drinking behaviors in mice. We tested whether alcohol intake and withdrawal alter DNA methylation of Fgf-2 and Fgfr1 and if there is a correlation regarding mRNA expression of these genes. Blood and brain tissues of mice receiving alcohol intermittently over a six-week period were analyzed using direct bisulfite sequencing and qRT-PCR analysis. Assessment of Fgf-2 and Fgfr1 promoter methylation revealed changes in the methylation of cytosines in the alcohol group compared with the control group. Moreover, we showed that the altered cytosines coincided with binding motives of several transcription factors. We also found that Fgf-2 and Fgfr1 gene expression was significantly decreased in alcohol-receiving mice compared with control littermates, and that this effect was specifically detected in the dorsomedial striatum, a brain region involved in the circuitry of the reward system. Overall, our data showed alcohol-induced alterations in both mRNA expression and methylation pattern of Fgf-2 and Fgfr1. Furthermore, these alterations showed a reward system regional specificity, therefore, resembling potential targets for future pharmacological interventions.


Subject(s)
Fibroblast Growth Factor 2 , Receptor, Fibroblast Growth Factor, Type 1 , Animals , Mice , Alcohol Drinking , DNA Methylation , Ethanol , Fibroblast Growth Factor 2/metabolism , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Receptors, Fibroblast Growth Factor/metabolism , RNA, Messenger/metabolism
6.
Transl Psychiatry ; 13(1): 55, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36792579

ABSTRACT

Relapse, a critical issue in alcohol addiction, can be attenuated by disruption of alcohol-associated memories. Memories are thought to temporarily destabilize upon retrieval during the reconsolidation process. Here, we provide evidence for unique transcriptional dynamics underpinning alcohol memory reconsolidation. Using a mouse place-conditioning procedure, we show that alcohol-memory retrieval increases the mRNA expression of immediate-early genes in the dorsal hippocampus and medial prefrontal cortex, and that alcohol seeking is abolished by post-retrieval non-specific inhibition of gene transcription, or by downregulating ARC expression using antisense-oligodeoxynucleotides. However, since retrieval of memories for a natural reward (sucrose) also increased the same immediate-early gene expression, we explored for alcohol-specific transcriptional changes using RNA-sequencing. We revealed a unique transcriptional fingerprint activated by alcohol memories, as the expression of this set of plasticity-related genes was not altered by sucrose-memory retrieval. Our results suggest that alcohol memories may activate two parallel transcription programs: one is involved in memory reconsolidation in general, and another is specifically activated during alcohol-memory processing.


Subject(s)
Ethanol , Memory , Humans , Memory/physiology , Ethanol/pharmacology , Hippocampus , Recurrence
7.
Article in English | MEDLINE | ID: mdl-36627475

ABSTRACT

Relapse to alcohol seeking and drinking is a major clinical challenge in alcohol use disorder and is frequently brought about by cue-induced craving, caused by exposure to cues that evoke alcohol-related memories. It has been postulated that memories become labile for manipulation shortly after their retrieval and then restabilize in a "memory reconsolidation" process. Disruption or interference with the reconsolidation of drug-associated memories has been suggested as a possible strategy to reduce or even prevent cue-induced craving and relapse. Here, we review literature demonstrating the capacity of behavioral or pharmacological manipulations to reduce relapse in animal models and humans when applied after a short retrieval of memories associated with alcohol, suggestively disrupting the reconsolidation of such memories. We suggest that while there is a clear potential of using post-retrieval manipulations to target specific relapse-evoking memories, future research should be more systematic, standardized, and translational. Specifically, we discuss several critical limitations and boundary conditions, which should be addressed to improve consistency and replicability in the field and lead to the development of an efficient reconsolidation-based relapse prevention therapy.

8.
Nat Metab ; 4(7): 883-900, 2022 07.
Article in English | MEDLINE | ID: mdl-35817855

ABSTRACT

Sexual dimorphisms are responsible for profound metabolic differences in health and behavior. Whether males and females react differently to environmental cues, such as solar ultraviolet (UV) exposure, is unknown. Here we show that solar exposure induces food-seeking behavior, food intake, and food-seeking behavior and food intake in men, but not in women, through epidemiological evidence of approximately 3,000 individuals throughout the year. In mice, UVB exposure leads to increased food-seeking behavior, food intake and weight gain, with a sexual dimorphism towards males. In both mice and human males, increased appetite is correlated with elevated levels of circulating ghrelin. Specifically, UVB irradiation leads to p53 transcriptional activation of ghrelin in skin adipocytes, while a conditional p53-knockout in mice abolishes UVB-induced ghrelin expression and food-seeking behavior. In females, estrogen interferes with the p53-chromatin interaction on the ghrelin promoter, thus blocking ghrelin and food-seeking behavior in response to UVB exposure. These results identify the skin as a major mediator of energy homeostasis and may lead to therapeutic opportunities for sex-based treatments of endocrine-related diseases.


Subject(s)
Ghrelin , Tumor Suppressor Protein p53 , Animals , Appetite , Female , Ghrelin/pharmacology , Humans , Male , Mice , Tumor Suppressor Protein p53/genetics , Ultraviolet Rays , Weight Gain
9.
Addict Biol ; 27(2): e13115, 2022 03.
Article in English | MEDLINE | ID: mdl-34796591

ABSTRACT

Alcohol use disorder (AUD) is a chronic, relapsing disorder, characterized by escalating alcohol drinking and loss of control, with very limited available treatments. We recently reported that the expression of fibroblast growth factor 2 (Fgf2) is increased in the striatum of rodents following long-term excessive alcohol drinking and that the systemic or intra-striatal administration of recombinant FGF2 increases alcohol consumption. Here, we set out to determine whether the endogenous FGF2 plays a role in alcohol drinking and reward, by testing the behavioural phenotype of Fgf2 knockout mice. We found that Fgf2 deficiency resulted in decreased alcohol consumption when tested in two-bottle choice procedures with various alcohol concentrations. Importantly, these effects were specific for alcohol, as a natural reward (sucrose) or water consumption was not affected by Fgf2 deficiency. In addition, Fgf2 knockout mice failed to show alcohol-conditioned place preference (CPP) but showed normal fear conditioning, suggesting that deletion of the growth factor reduces alcohol's rewarding properties. Finally, Fgf2 knockout mice took longer to recover from the loss of righting reflex and showed higher blood alcohol concentrations when challenged with an intoxicating alcohol dose, suggesting that their ethanol metabolism might be affected. Together, our results show that the endogenous FGF2 plays a critical role in alcohol drinking and reward and indicate that FGF2 is a positive regulator of alcohol-drinking behaviours. Our findings suggest that FGF2 is a potential biomarker for problem alcohol drinking and is a potential target for pharmacotherapy development for AUD.


Subject(s)
Ethanol , Fibroblast Growth Factor 2 , Alcohol Drinking/genetics , Alcohol Drinking/metabolism , Animals , Corpus Striatum , Fibroblast Growth Factor 2/metabolism , Fibroblast Growth Factor 2/pharmacology , Mice , Reward
10.
Neurosci Lett ; 764: 136194, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34433100

ABSTRACT

Notwithstanding major advances in psychotherapeutics, their efficacy and specificity remain limited. The slow onset of beneficial outcomes and numerous adverse effects of widely used medications remain of chief concern, warranting in-depth studies. The majority of frontline therapies are thought to enhance the endogenous monoaminergic drive, to initiate a cascade of molecular events leading to lasting functional and structural plasticity. They also involve alterations in trophic factor signalling, including brain-derived neurotrophic factor (BDNF), VGF (non-acronymic), vascular endothelial growth factor (VEGF), fibroblast growth factor 2 (FGF2), glial cell-derived neurotrophic factor (GDNF), and others. In several major mental disorders, emerging data suggest protective and restorative effects of trophic factors in preclinical models, when applied on their own. Antidepressant outcomes of VGF and FGF2, for instance, were shown in experimental animals, while BDNF and GDNF prove useful in the treatment of addiction, schizophrenia, and autism spectrum disorders. The main challenge with the effective translation of these and other findings in the clinic is the knowledge gap in action mechanisms with potential risks, as well as the lack of effective platforms for validation under clinical settings. Herein, we review the state-of-the-art and advances in the therapeutic use of trophic factors in several major neuropsychiatric disorders.


Subject(s)
Mental Disorders/drug therapy , Nanoparticle Drug Delivery System , Nerve Growth Factors/administration & dosage , Neuronal Plasticity/drug effects , Animals , Disease Models, Animal , Drug Evaluation, Preclinical , Humans , Review Literature as Topic
11.
Int J Mol Sci ; 22(8)2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33920982

ABSTRACT

Alcohol and nicotine are widely abused legal substances worldwide. Relapse to alcohol or tobacco seeking and consumption after abstinence is a major clinical challenge, and is often evoked by cue-induced craving. Therefore, disruption of the memory for the cue-drug association is expected to suppress relapse. Memories have been postulated to become labile shortly after their retrieval, during a "memory reconsolidation" process. Interference with the reconsolidation of drug-associated memories has been suggested as a possible strategy to reduce or even prevent cue-induced craving and relapse. Here, we surveyed the growing body of studies in animal models and in humans assessing the effectiveness of pharmacological or behavioral manipulations in reducing relapse by interfering with the reconsolidation of alcohol and nicotine/tobacco memories. Our review points to the potential of targeting the reconsolidation of these memories as a strategy to suppress relapse to alcohol drinking and tobacco smoking. However, we discuss several critical limitations and boundary conditions, which should be considered to improve the consistency and replicability in the field, and for development of an efficient reconsolidation-based relapse-prevention therapy.


Subject(s)
Ethanol/adverse effects , Memory Consolidation/drug effects , Nicotine/adverse effects , Behavior/drug effects , Humans , Protein Biosynthesis/drug effects , Receptors, Cell Surface/metabolism
12.
Addict Biol ; 26(3): e12935, 2021 05.
Article in English | MEDLINE | ID: mdl-32657509

ABSTRACT

Relapse to alcohol abuse is often caused by exposure to potent alcohol-associated cues. Therefore, disruption of the cue-alcohol memory can prevent relapse. It is believed that memories destabilize and become prone for updating upon their reactivation through retrieval and then restabilize within 6 h during a "reconsolidation" process. We recently showed that relapse to cocaine seeking in a place-conditioning paradigm could be prevented by counterconditioning the cocaine cues with aversive outcomes following cocaine-memory retrieval. However, to better model addiction-related behaviors, self-administration models are necessary. Here, we demonstrate that relapse to alcohol seeking can be prevented by aversive counterconditioning conducted during alcohol-memory reconsolidation, in the place conditioning and operant self-administration paradigms, in mice and rats, respectively. We found that the reinstatement of alcohol-conditioned place preference was abolished only when aversive counterconditioning with water flooding was given shortly after alcohol-memory retrieval. Furthermore, rats trained to lever press for alcohol showed decreased context-induced renewal of alcohol-seeking responding when the lever pressing was punished with foot-shocks, shortly, but not 6 h, after memory retrieval. These results suggest that aversive counterconditioning can prevent relapse to alcohol seeking only when performed during alcohol-memory reconsolidation, presumably by updating, or replacing, the alcohol memory with aversive information. Finally, we found that aversive counterconditioning preceded by alcohol-memory retrieval was characterized by the upregulation of brain-derived neurotrophic factor (Bdnf) mRNA expression in the medial prefrontal cortex, suggesting that BDNF may play a role in the memory updating process.


Subject(s)
Alcohol-Related Disorders/therapy , Conditioning, Operant/physiology , Ethanol/pharmacology , Memory Consolidation/physiology , Animals , Brain-Derived Neurotrophic Factor/metabolism , Female , Male , Mice , Mice, Inbred C57BL , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , RNA, Messenger/metabolism , Rats , Rats, Wistar , Recurrence
13.
Article in English | MEDLINE | ID: mdl-31964648

ABSTRACT

Neurotrophic growth factors were originally characterized for their support in neuronal differentiation, outgrowth, and survival during development. However, it has been acknowledged that they also play a vital role in the adult brain. Abnormalities in growth factors have been implicated in a variety of neurological and psychiatric disorders, including alcohol use disorder (AUD). This work focuses on the interaction between alcohol and growth factors. We review literature suggesting that several growth factors play a unique role in the regulation of alcohol consumption, and that breakdown in these growth factor systems is linked to the development of AUD. Specifically, we focus on the brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), fibroblast growth factor 2 (FGF2), and insulin growth factor 1 (IGF-1). We also review the literature on the potential role of midkine (MDK) and pleiotrophin (PTN) and their receptor, anaplastic lymphoma kinase (ALK), in AUD. We show that alcohol alters the expression of these growth factors or their receptors in brain regions previously implicated in addiction, and that manipulations on these growth factors and their downstream signaling can affect alcohol-drinking behaviors in animal models. We conclude that there is a need for translational and clinical research to assess the therapeutic potential of new pharmacotherapies targeting these systems.


Subject(s)
Alcoholism/physiopathology , Brain-Derived Neurotrophic Factor/metabolism , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Animals , Brain/metabolism , Disease Models, Animal , Gene Expression Regulation , Humans , RNA, Messenger/metabolism , Signal Transduction/physiology
14.
J Psychiatr Res ; 121: 1-9, 2020 02.
Article in English | MEDLINE | ID: mdl-31710958

ABSTRACT

Alcohol use disorder is one of the most disabling diseases worldwide. Glial-cell derived neurotrophic factor (Gdnf) shows promising results concerning the inhibition of alcohol consumption in rodent models. We investigated the epigenetic regulation of Gdnf following ethanol consumption and withdrawal in a rat model. 32 Wistar rats underwent 7 weeks of intermittent access to alcohol in a 2-bottle choice (IA2BC). Whole blood, Nucleus Accumbens (NAc) and Ventral Tegmental Area (VTA) were collected immediately after the last 24 h of an alcohol-drinking session (alcohol group, AG) or 24 h after withdrawal (withdrawal group, WG). MRNA levels were measured using real-time quantitative PCR. Bisulfite-conversion of DNA and capillary sequencing was used to determine methylation levels of the core promoter (CP) and the negative regulatory element (NRE). The CP of the AG in the NAc was significantly less methylated compared to controls (p < 0.05). In the NAc, mRNA expression was significantly higher in the WG (p < 0.05). In the WG, mRNA expression levels in the VTA were significantly lower (p < 0.05) and showed significantly less methylation in the NRE in the VTA (p < 0.001) and the NAc (p < 0.01) compared to controls. Changes in the cerebral mRNA expression correspond to alterations in DNA methylation of the Gdnf promoter in a rodent model. Our results hold clinical relevance since differences in Gdnf mRNA expression and DNA methylation could be a target for pharmacological interventions.


Subject(s)
Alcohol Drinking/metabolism , Alcoholism/metabolism , DNA Methylation , Epigenesis, Genetic , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Nucleus Accumbens/metabolism , Substance Withdrawal Syndrome/metabolism , Ventral Tegmental Area/metabolism , Alcohol Drinking/blood , Alcoholism/blood , Animals , Disease Models, Animal , Female , Male , RNA, Messenger/metabolism , Rats , Rats, Wistar , Substance Withdrawal Syndrome/blood
15.
J Neurosci ; 39(40): 7947-7957, 2019 10 02.
Article in English | MEDLINE | ID: mdl-31375540

ABSTRACT

Excessive alcohol intake leads to mesostriatal neuroadaptations, and to addiction phenotypes. We recently found in rodents that alcohol increases fibroblast growth factor 2 (FGF2) expression in the dorsomedial striatum (DMS), which promotes alcohol consumption. Here, we show that systemic or intra-DMS blockade of the FGF2 receptor, FGF receptor-1 (FGFR1), suppresses alcohol consumption, and that the effects of FGF2-FGFR1 on alcohol drinking are mediated via the phosphoinositide 3 kinase (PI3K) signaling pathway. Specifically, we found that sub-chronic alcohol treatment (7 d × 2.5 g/kg, i.p.) increased Fgfr1 mRNA expression in the dorsal hippocampus and dorsal striatum. However, prolonged and excessive voluntary alcohol consumption in a two-bottle choice procedure increased Fgfr1 expression selectively in DMS. Importantly, systemic administration of the FGFR1 inhibitor PD173074 to mice, as well as its infusion into the DMS of rats, decreased alcohol consumption and preference, with no effects on natural reward consumption. Finally, inhibition of the PI3K, but not of the mitogen-activated protein kinase (MAPK) signaling pathway, blocked the effects of FGF2 on alcohol intake and preference. Our results suggest that activation of FGFR1 by FGF2 in the DMS leads to activation of the PI3K signaling pathway, which promotes excessive alcohol consumption, and that inhibition of FGFR1 may provide a novel therapeutic target for alcohol use disorder.SIGNIFICANCE STATEMENT Long-term alcohol consumption causes neuroadaptations in the mesostriatal reward system, leading to addiction-related behaviors. We recently showed that alcohol upregulates the expression of fibroblast growth factor 2 (FGF2) in dorsomedial striatum (DMS) or rats and mice, and in turn, FGF2 increases alcohol consumption. Here, we show that long-term alcohol intake also increases the expression of the FGF2 receptor, FGFR1 in the DMS. Importantly, inhibition of FGFR1 activity by a selective receptor antagonist reduces alcohol drinking, when given systemically or directly into the DMS. We further show that the effects of FGF2-FGFR1 on alcohol drinking are mediated via activation of the PI3K intracellular signaling pathway, providing an insight on the mechanism for this effect.


Subject(s)
Alcohol Drinking/genetics , Corpus Striatum/drug effects , Phosphatidylinositol 3-Kinases/drug effects , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Signal Transduction/drug effects , Animals , Central Nervous System Depressants/pharmacology , Choice Behavior/drug effects , Ethanol/pharmacology , Female , Fibroblast Growth Factor 2/pharmacology , Male , Mice , Mice, Inbred C57BL , Pyrimidines/pharmacology , Rats , Rats, Wistar , Receptor, Fibroblast Growth Factor, Type 1/biosynthesis , Receptor, Fibroblast Growth Factor, Type 1/genetics
16.
Sci Rep ; 9(1): 9213, 2019 06 25.
Article in English | MEDLINE | ID: mdl-31239475

ABSTRACT

Appetitive memories play a crucial role in learning and behavior, but under certain circumstances, such memories become maladaptive and play a vital role in addiction and other psychopathologies. Recent scientific research has demonstrated that memories can be modified following their reactivation through memory retrieval in a process termed memory reconsolidation. Several nonpharmacological behavioral manipulations yielded mixed results in their capacity to alter maladaptive memories in humans. Here, we aimed to translate the promising findings observed in rodents to humans. We constructed a novel three-day procedure using aversive counterconditioning to alter appetitive memories after short memory retrieval. On the first day, we used appetitive conditioning to form appetitive memories. On the second day, we retrieved these appetitive memories in one group (Retrieval group) but not in a second group. Subsequently, all participants underwent counterconditioning. On the third day, we attempted to reinstate the appetitive memories from day one. We observed a significant reduction in the reinstatement of the original appetitive memory when counterconditioning was induced following memory retrieval. Here, we provide a novel human paradigm that models several memory processes and demonstrate memory attenuation when counterconditioned after its retrieval. This paradigm can be used to study complex appetitive memory dynamics, e.g., memory reconsolidation and its underlying brain mechanisms.


Subject(s)
Appetitive Behavior/physiology , Conditioning, Psychological/physiology , Mental Recall/physiology , Adult , Female , Humans , Male , Time Factors
17.
Addict Biol ; 24(3): 335-343, 2019 05.
Article in English | MEDLINE | ID: mdl-29726054

ABSTRACT

Glial cell line-derived neurotrophic factor (GDNF) has been extensively studied for its role in the development and maintenance of the midbrain dopaminergic system, although evidence suggests that GDNF also plays a role in drug and alcohol addiction. This review focuses on the unique actions of GDNF in the mechanisms that prevent the transition from recreational alcohol use to abuse. Specifically, we describe studies in rodents suggesting that alcohol acutely increases GDNF expression in the ventral tegmental area, which enables the activation of the mitogen-activated protein kinase signaling pathway and the gating of alcohol intake. We further provide evidence to suggest that GDNF acts in the ventral tegmental area via both nongenomic and genomic mechanisms to suppress alcohol consumption. In addition, we describe findings indicating that when this endogenous protective pathway becomes dysregulated, alcohol intake levels escalate. Finally, we describe the potential use of GDNF inducers as a novel therapeutic approach to treat alcohol use disorder.


Subject(s)
Alcoholism/etiology , Glial Cell Line-Derived Neurotrophic Factor/physiology , Alcoholism/physiopathology , Central Nervous System Depressants/pharmacology , Dopaminergic Neurons/physiology , Ethanol/pharmacology , Humans , Limbic System/pathology , Mental Disorders/etiology , Mental Disorders/physiopathology , Nucleus Accumbens/physiology , Signal Transduction/physiology , Tegmentum Mesencephali/physiology
18.
Neuropsychopharmacology ; 44(2): 415-424, 2019 01.
Article in English | MEDLINE | ID: mdl-30008470

ABSTRACT

Neuroadaptations in the brain reward system caused by excessive alcohol intake, lead to drinking escalation and alcohol use disorder phenotypes. Activity-dependent neuroprotective protein (ADNP) is crucial for brain development, and is implicated in neural plasticity in adulthood. Here, we discovered that alcohol exposure regulates Adnp expression in the mesolimbic system, and that Adnp keeps alcohol drinking in moderation, in a sex-dependent manner. Specifically, Sub-chronic alcohol treatment (2.5 g/kg/day for 7 days) increased Adnp mRNA levels in the dorsal hippocampus in both sexes, and in the nucleus accumbens of female mice, 24 h after the last alcohol injection. Long-term voluntary consumption of excessive alcohol quantities (~10-15 g/kg/24 h, 5 weeks) increased Adnp mRNA in the hippocampus of male mice immediately after an alcohol-drinking session, but the level returned to baseline after 24 h of withdrawal. In contrast, excessive alcohol consumption in females led to long-lasting reduction in hippocampal Adnp expression. We further tested the regulatory role of Adnp in alcohol consumption, using the Adnp haploinsufficient mouse model. We found that Adnp haploinsufficient female mice showed higher alcohol consumption and preference, compared to Adnp intact females, whereas no genotype difference was observed in males. Importantly, daily intranasal administration of the ADNP-snippet drug candidate NAP normalized alcohol consumption in Adnp haploinsufficient females. Finally, female Adnp haploinsufficient mice showed a sharp increase in alcohol intake after abstinence, suggesting that Adnp protects against relapse in females. The current data suggest that ADNP is a potential novel biomarker and negative regulator of alcohol-drinking behaviors.


Subject(s)
Alcohol Drinking/genetics , Ethanol/pharmacology , Gene Expression/drug effects , Hippocampus/drug effects , Homeodomain Proteins/genetics , Nerve Tissue Proteins/genetics , Alcohol Drinking/metabolism , Animals , Disease Models, Animal , Female , Haploinsufficiency , Hippocampus/metabolism , Homeodomain Proteins/metabolism , Male , Mice , Mice, Knockout , Nerve Tissue Proteins/metabolism , Sex Factors
19.
Eur J Neurosci ; 50(3): 2552-2561, 2019 08.
Article in English | MEDLINE | ID: mdl-30144335

ABSTRACT

Fibroblast growth factor 2 (FGF2) is a member of the FGF-family, which consists of 22 members, with four known FGF receptors (five in humans). Over the last 30 years, FGF2 has been extensively studied for its role in cell proliferation, differentiation, growth, survival and angiogenesis during development, as well as for its role in adult neurogenesis and regenerative plasticity. Over the past decade, FGF2 has been implicated in learning and memory, as well as in several neuropsychiatric disorders, including anxiety, stress, depression and drug addiction. In this review, we present accumulating evidence indicating the involvement of FGF2 in neuroadaptations caused by drugs of abuse, namely, amphetamine, cocaine, nicotine and alcohol. Moreover, evidence suggests that FGF2 is a positive regulator of alcohol and drug-related behaviors. Thus, although additional studies are yet required, we suggest that reducing FGF2 activity may provide a novel therapeutic approach for substance use disorders.


Subject(s)
Fibroblast Growth Factor 2/metabolism , Illicit Drugs/metabolism , Substance-Related Disorders/metabolism , Animals , Dopamine Agents/administration & dosage , Dopamine Agents/metabolism , Fibroblast Growth Factor 2/antagonists & inhibitors , Humans , Illicit Drugs/adverse effects , Learning/drug effects , Learning/physiology , Memory/drug effects , Memory/physiology , Substance-Related Disorders/drug therapy
20.
Alcohol ; 74: 73-82, 2019 02.
Article in English | MEDLINE | ID: mdl-30424979

ABSTRACT

Alcohol use disorder (AUD) is a multifaceted neuropsychiatric disease that combines behavioral, psychosocial, and neurobiological aspects. Over the previous decade, animal models have advanced in modeling the major psychological constructs that characterize AUD. These advances pave the road for more sophisticated behavioral models that capture addiction-related aspects, such as alcohol craving, compulsive seeking and intake, dependence, and relapse. In this review, we survey the recent progress in behavioral animal modeling of five aspects of AUD: alcohol consumption, dependence, and seeking; compulsivity in alcohol intake despite adverse outcomes; vulnerability and resilience factors in alcohol addiction; relapse despite treatment; and relapse prevention by manipulating alcohol-associated memory reconsolidation. These advances represent a general attempt to grasp the complexity and multidimensional nature of AUD, and to focus on behavioral characteristics that better reflect and model this disorder.


Subject(s)
Alcoholism/psychology , Disease Models, Animal , Alcohol Drinking , Animals , Compulsive Behavior , Humans , Memory , Phenotype , Recurrence
SELECTION OF CITATIONS
SEARCH DETAIL
...