Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
J Phys Chem B ; 128(15): 3652-3661, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38576273

ABSTRACT

Many pharmaceutical drugs are known to interact with lipid membranes through nonspecific molecular interactions, which affect their therapeutic effect. Ibuprofen is a nonsteroidal anti-inflammatory drug (NSAID) and one of the most commonly prescribed. In the presence of cholesterol, lipid bilayers can separate into nanoscale liquid-disordered and liquid-ordered structures, the latter known as lipid rafts. Here, we study spin-labeled ibuprofen (ibuprofen-SL) in the model membrane consisting of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), and cholesterol in the molar ratio of (0.5-0.5xchol)/(0.5-0.5xchol)/xchol. Electron paramagnetic resonance (EPR) spectroscopy is employed, along with its pulsed version of double electron-electron resonance (DEER, also known as PELDOR). The data obtained indicate lateral lipid-mediated clustering of ibuprofen-SL molecules with a local surface density noticeably larger than that expected for random lateral distribution. In the absence of cholesterol, the data can be interpreted as indicating alternating clustering in two opposing leaflets of the bilayer. In the presence of cholesterol, for xchol ≥ 20 mol %, the results show that ibuprofen-SL molecules have a quasi-regular lateral distribution, with a "superlattice" parameter of ∼3.0 nm. This regularity can be explained by the entrapment of ibuprofen-SL molecules by lipid rafts known to exist in this system with the additional assumption that lipid rafts have a nanoscale substructure.


Subject(s)
Ibuprofen , Lipid Bilayers , Electron Spin Resonance Spectroscopy , Lipid Bilayers/chemistry , Cholesterol/chemistry , Membrane Microdomains , Phosphatidylcholines/chemistry
2.
Nat Commun ; 15(1): 1552, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38448442

ABSTRACT

Nature is abundant in material platforms with anisotropic permittivities arising from symmetry reduction that feature a variety of extraordinary optical effects. Principal optical axes are essential characteristics for these effects that define light-matter interaction. Their orientation - an orthogonal Cartesian basis that diagonalizes the permittivity tensor, is often assumed stationary. Here, we show that the low-symmetry triclinic crystalline structure of van der Waals rhenium disulfide and rhenium diselenide is characterized by wandering principal optical axes in the space-wavelength domain with above π/2 degree of rotation for in-plane components. In turn, this leads to wavelength-switchable propagation directions of their waveguide modes. The physical origin of wandering principal optical axes is explained using a multi-exciton phenomenological model and ab initio calculations. We envision that the wandering principal optical axes of the investigated low-symmetry triclinic van der Waals crystals offer a platform for unexplored anisotropic phenomena and nanophotonic applications.

3.
Nanoscale Horiz ; 9(5): 863-872, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38533738

ABSTRACT

The behavior of polyelectrolytes in confined spaces has direct relevance to the protein mediated ion transport in living organisms. In this paper, we govern lithium chloride transport by the interface provided by polyelectrolytes, polycation, poly(diallyldimethylammonium chloride) (PDDA) and, polyanion, double stranded deoxyribonucleic acid (dsDNA), in confined graphene oxide (GO) membranes. Polyelectrolyte-GO interfaces demonstrate neuromorphic functions that were successfully applied with nanochannel ion interactions contributed, resulting in ion memory effects. Excitatory and inhibitory post-synaptic currents were tuned continuously as the number of pulses applied increased accordingly, increasing decay times. Furthermore, we demonstrated the short-term memory of a trained vs untrained device in computation. On account of its simple and safe production along with its robustness and stability, we anticipate our device to be a low dimensional building block for arrays to embed artificial neural networks in hardware for neuromorphic computing. Additionally, incorporating such devices with sensing and actuating parts for a complete feedback loop produces robotics with its own ability to learn by modifying actuation based on sensing data.


Subject(s)
DNA , Graphite , Polyethylenes , Quaternary Ammonium Compounds , Graphite/chemistry , DNA/chemistry , Quaternary Ammonium Compounds/chemistry , Polyethylenes/chemistry , Neural Networks, Computer , Membranes, Artificial , Oxides/chemistry
4.
Plants (Basel) ; 13(3)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38337892

ABSTRACT

The tomato is a convenient object for studying reproductive processes, which has become a classic. Such complex processes as flowering and fruit setting require an understanding of the fundamental principles of molecular interaction, the structures of genes and proteins, the construction of signaling pathways for transcription regulation, including the synchronous actions of cis-regulatory elements (promoter and enhancer), trans-regulatory elements (transcription factors and regulatory RNAs), and transposable elements and epigenetic regulators (DNA methylation and acetylation, chromatin structure). Here, we discuss the current state of research on tomatoes (2017-2023) devoted to studying the function of genes that regulate flowering and signal regulation systems using genome-editing technologies, RNA interference gene silencing, and gene overexpression, including heterologous expression. Although the central candidate genes for these regulatory components have been identified, a complete picture of their relationship has yet to be formed. Therefore, this review summarizes the latest achievements related to studying the processes of flowering and fruit set. This work attempts to display the gene interaction scheme to better understand the events under consideration.

5.
Int J Mol Sci ; 25(2)2024 Jan 07.
Article in English | MEDLINE | ID: mdl-38255834

ABSTRACT

Tomato (Solanum lycopersicum L.) is one of the most commercially essential vegetable crops cultivated worldwide. In addition to the nutritional value, tomato is an excellent model for studying climacteric fruits' ripening processes. Despite this, the available natural pool of genes that allows expanding phenotypic diversity is limited, and the difficulties of crossing using classical selection methods when stacking traits increase proportionally with each additional feature. Modern methods of the genetic engineering of tomatoes have extensive potential applications, such as enhancing the expression of existing gene(s), integrating artificial and heterologous gene(s), pointing changes in target gene sequences while keeping allelic combinations characteristic of successful commercial varieties, and many others. However, it is necessary to understand the fundamental principles of the gene molecular regulation involved in tomato fruit ripening for its successful use in creating new varieties. Although the candidate genes mediate ripening have been identified, a complete picture of their relationship has yet to be formed. This review summarizes the latest (2017-2023) achievements related to studying the ripening processes of tomato fruits. This work attempts to systematize the results of various research articles and display the interaction pattern of genes regulating the process of tomato fruit ripening.


Subject(s)
Solanum lycopersicum , Solanum lycopersicum/genetics , Fruit/genetics , Alleles , Crops, Agricultural , Genetic Engineering
6.
Nat Commun ; 14(1): 8478, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38123545

ABSTRACT

Optical anapoles are intriguing charge-current distributions characterized by a strong suppression of electromagnetic radiation. They originate from the destructive interference of the radiation produced by electric and toroidal multipoles. Although anapoles in dielectric structures have been probed and mapped with a combination of near- and far-field optical techniques, their excitation using fast electron beams has not been explored so far. Here, we theoretically and experimentally analyze the excitation of optical anapoles in tungsten disulfide (WS2) nanodisks using Electron Energy Loss Spectroscopy (EELS) in Scanning Transmission Electron Microscopy (STEM). We observe prominent dips in the electron energy loss spectra and associate them with the excitation of optical anapoles and anapole-exciton hybrids. We are able to map the anapoles excited in the WS2 nanodisks with subnanometer resolution and find that their excitation can be controlled by placing the electron beam at different positions on the nanodisk. Considering current research on the anapole phenomenon, we envision EELS in STEM to become a useful tool for accessing optical anapoles appearing in a variety of dielectric nanoresonators.

7.
Molecules ; 28(16)2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37630243

ABSTRACT

Diclofenac is a non-steroidal anti-inflammatory drug (NSAID) from the group of phenylacetic acid derivatives, which has analgesic, anti-inflammatory and antipyretic properties. The interaction of non-steroidal anti-inflammatory drugs with cell membranes can affect their physicochemical properties, which, in turn, can cause a number of side effects in the use of these drugs. Electron paramagnetic resonance (EPR) spectroscopy could be used to study the interaction of diclofenac with a membrane, if its spin-labeled analogs existed. This paper describes the synthesis of spin-labeled diclofenac (diclofenac-SL), which consists of a simple sequence of transformations such as iodination, esterification, Sonogashira cross-coupling, oxidation and saponification. EPR spectra showed that diclofenac-SL binds to a lipid membrane composed of palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). 2H electron spin echo spectroscopy (ESEEM) was used to determine the position of the diclofenac-SL relative to the membrane surface. It was established that its average depth of immersion corresponds to the 5th position of the carbon atom in the lipid chain.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Diclofenac , Spin Labels , Membranes , Glycerylphosphorylcholine
8.
Biochim Biophys Acta Biomembr ; 1865(8): 184215, 2023 12.
Article in English | MEDLINE | ID: mdl-37633627

ABSTRACT

Non-steroidal anti-inflammatory drugs (NSAIDs) have antipyretic, anti-inflammatory and analgesic effects, and can be used in the treatment of various diseases. These drugs have also a number of side effects, which may be related to their interaction with lipid membranes. In this study, we use the spin-labeled NSAID ibuprofen (ibuprofen-SL) as a relaxation enhancer to study its interaction with model lipid membranes employing liquid-state 1H NMR at 500 MHz. The high magnetic moment of unpaired electron in the spin label made it possible to reduce the concentration of the studied drug in the membrane to tenths of a mole percent. As model membranes, unilamellar POPC liposomes and bicelles consisting of a 2:1 mixture of DHPC:DMPC or DHPC:POPC lipids were used. An increase in the rate of proton spin-lattice relaxation, T1-1, selectively detected for protons at different positions in the lipid molecule, showed that ibuprofen-SL is localized in the hydrophobic part of the lipid bilayer. As the concentration of ibuprofen-SL increases to 0.5 mol%, the distribution of positions of ibuprofen-SL across the bilayer becomes wider. In the presence of 20 mol% of cholesterol, ibuprofen-SL is displaced from the core of the membrane to a region closer to the head group of the bilayer. This displacement was also confirmed by the NMR NOESY experiment conducted with unlabeled ibuprofen. For bilayers containing unsaturated POPC lipids, the distribution of ibuprofen positions across the bilayer becomes narrower compared to the presence of saturated DMPC lipids.


Subject(s)
Dimyristoylphosphatidylcholine , Ibuprofen , Anti-Inflammatory Agents, Non-Steroidal , Electrons
9.
Nano Lett ; 23(14): 6713-6719, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37428644

ABSTRACT

Exotic quantum transport phenomena established in Josephson junctions (JJs) are reflected by a nonsinusoidal current-phase relation (CPR). The solidified approach to measuring the CPR is via an asymmetric dc-SQUID with a reference JJ that has a high critical current. We probed this method by measuring CPRs of hybrid JJs based on the 3D topological insulator (TI) Bi2Te2Se with a nanobridge acting as a reference JJ. We captured both highly skewed and sinusoidal critical current oscillations within single devices which contradict the uniqueness of the CPR. This implies that the widely used method provides inaccurate CPR measurement and leads to misinterpretation. It was shown that the accuracy of the CPR measurement is mediated by the asymmetry in derivatives of the CPRs but not in critical currents, as was previously thought. Finally, we provided considerations for an accurate CPR measurement via the most commonly used reference JJs.

10.
J Phys Chem Lett ; 14(15): 3777-3784, 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37052302

ABSTRACT

Preferential selection of a given enantiomer over its chiral counterpart has become increasingly relevant in the advent of the next era of medical drug design. In parallel, cavity quantum electrodynamics has grown into a solid framework to control energy transfer and chemical reactivity, the latter requiring strong coupling. In this work, we derive an analytical solution to a system of many chiral emitters interacting with a chiral cavity similar to the widely used Tavis-Cummings and Hopfield models of quantum optics. We are able to estimate the discriminating strength of chiral polaritonics, discuss possible future development directions and exciting applications such as elucidating homochirality, and deliver much needed intuition to foster the newly flourishing field of chiral polaritonics.

11.
Membranes (Basel) ; 12(11)2022 Oct 30.
Article in English | MEDLINE | ID: mdl-36363632

ABSTRACT

Ibuprofen is a non-steroidal anti-inflammatory drug (NSAID) with analgesic and antipyretic effects. Understanding the molecular mechanisms of drug interaction with cell membranes is important to improving drug delivery, uptake by cells, possible side effects, etc. Double electron-electron resonance spectroscopy (DEER, also known as PELDOR) provides information on the nanoscale spatial arrangement of spin-labeled molecules. Here, DEER was applied to study (mono-)spin-labeled ibuprofen (ibuprofen-SL) in a bilayer of palmitoyl-oleoyl-sn-glycerophosphocholine (POPC). The results obtained show that the ibuprofen-SL molecules are located within a plane in each bilayer leaflet. At their low molar concentration in the bilayer χ, the found surface concentration of ibuprofen-SL is two times higher than χ, which can be explained by alternative assembling in the two leaflets of the bilayer. When χ > 2 mol%, these assemblies merge. The findings shed new light on the nanoscale spatial arrangement of ibuprofen in biological membranes.

12.
Molecules ; 27(13)2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35807376

ABSTRACT

Ibuprofen is a non-steroidal anti-inflammatory drug possessing analgesic and antipyretic activity. Electron paramagnetic resonance (EPR) spectroscopy could be applied to study its interaction with biological membranes and proteins if its spin-labeled analogs were synthesized. Here, a simple sequence of ibuprofen transformations-nitration, esterification, reduction, Sandmeyer reaction, Sonogashira cross-coupling, oxidation and saponification-was developed to attain this goal. The synthesis resulted in spin-labeled ibuprofen (ibuprofen-SL) in which the spin label TEMPOL is attached to the benzene ring. EPR spectra confirmed interaction of ibuprofen-SL with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayers. Using 2H electron spin echo envelope modulation (ESEEM) spectroscopy, ibuprofen-SL was found to be embedded into the hydrophobic bilayer interior.


Subject(s)
Ibuprofen , Lipid Bilayers , Electron Spin Resonance Spectroscopy , Lipid Bilayers/chemistry , Membranes , Spin Labels
13.
Nat Commun ; 13(1): 2049, 2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35440544

ABSTRACT

Atomically thin transition metal dichalcogenides (TMDCs) present a promising platform for numerous photonic applications due to excitonic spectral features, possibility to tune their constants by external gating, doping, or light, and mechanical stability. Utilization of such materials for sensing or optical modulation purposes would require a clever optical design, as by itself the 2D materials can offer only a small optical phase delay - consequence of the atomic thickness. To address this issue, we combine films of 2D semiconductors which exhibit excitonic lines with the Fabry-Perot resonators of the standard commercial SiO2/Si substrate, in order to realize topological phase singularities in reflection. Around these singularities, reflection spectra demonstrate rapid phase changes while the structure behaves as a perfect absorber. Furthermore, we demonstrate that such topological phase singularities are ubiquitous for the entire class of atomically thin TMDCs and other high-refractive-index materials, making it a powerful tool for phase engineering in flat optics. As a practical demonstration, we employ PdSe2 topological phase singularities for a refractive index sensor and demonstrate its superior phase sensitivity compared to typical surface plasmon resonance sensors.

14.
Phys Chem Chem Phys ; 24(10): 5974-5981, 2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35199802

ABSTRACT

Deep eutectic solvents (DESs) are eutectic mixtures of hydrogen bond acceptors and hydrogen bond donors which melt at much lower temperatures than the individual components. DESs are attracting growing interest because of a large variety of possible technological applications. Here, supercooled DESs consisting of choline chloride-urea (1 : 2) (reline) and of choline chloride-thiourea (1 : 2) (ChCl-thiourea), with introduced nitroxide spin probe tempone, were studied by electron paramagnetic resonance (EPR) spectroscopy. Conventional continuous wave (CW) EPR spectra showed the coexistence of solid and liquid microphases, with microviscosity of ∼ 10 P in the latter case. CW EPR spectra taken at different temperatures for ChCl-thiourea showed isosbestic points, which indicates that two phases are separated by sharp boundaries; for reline these points are rather diffuse, which in turn implies diffuse boundaries. Stochastic molecular librations detected by pulsed EPR possess the ability for elucidating nanoscale features of molecular packing; the data obtained showed a drastic difference for the onset of these motions for ChCl-thiourea and for reline, which was interpreted as evidence that the rigidity of molecular packing for ChCl-thiourea is stronger than that for reline. The temperature dependence of stochastic molecular librations for reline was found to be similar to that known for lipid bilayers and globular proteins, which indicates the proximity of the characteristics of molecular packing in these molecular systems.


Subject(s)
Choline , Thiourea , Choline/chemistry , Deep Eutectic Solvents , Hydrogen Bonding , Solvents/chemistry
15.
Nano Lett ; 22(2): 652-657, 2022 Jan 26.
Article in English | MEDLINE | ID: mdl-34990554

ABSTRACT

Atomically thin superconductivity in Pb monolayers grown on Si(111) is affected by adding a tiny amount of Au atoms. In situ macroscopic electron transport measurements reveal that superconductivity develops at higher temperatures and manifests a sharper superconducting transition to zero resistance as compared to pristine Pb/Si(111). Scanning tunneling microscopy and spectroscopy show that Au atoms decorate atomic step edges of Pb/Si(111) and link the electronic reservoirs of neighboring atomic terraces. The propagation of superconducting correlations across the edges is enhanced, facilitating the coherence between terraces and promoting macroscopic superconductivity at higher temperatures. This finding opens new ways to design and control Josephson junctions at the atomic scale.

16.
J Phys Chem Lett ; 12(51): 12196-12201, 2021 Dec 30.
Article in English | MEDLINE | ID: mdl-34918928

ABSTRACT

Lateral Josephson junctions (LJJ) made of two superconducting Nb electrodes coupled by Cu-film are applied to quantify the stray magnetic field of Co-coated cantilevers used in magnetic force microscopy (MFM). The interaction of the magnetic cantilever with LJJ is reflected in the electronic response of LJJ as well as in the phase shift of cantilever oscillations, simultaneously measured. The phenomenon is theorized and used to establish the spatial map of the stray field. Based on our findings, we suggest integrating LJJs directly on the tips of cantilevers and using them as nanosensors of local magnetic fields in scanning probe microscopes. Such probes are less invasive than conventional magnetic MFM cantilevers and simpler to realize than SQUID-on-tip sensors.

17.
Nature ; 597(7875): 214-219, 2021 09.
Article in English | MEDLINE | ID: mdl-34497392

ABSTRACT

Spontaneous formation of ordered structures-self-assembly-is ubiquitous in nature and observed on different length scales, ranging from atomic and molecular systems to micrometre-scale objects and living matter1. Self-ordering in molecular and biological systems typically involves short-range hydrophobic and van der Waals interactions2,3. Here we introduce an approach to micrometre-scale self-assembly based on the joint action of attractive Casimir and repulsive electrostatic forces arising between charged metallic nanoflakes in an aqueous solution. This system forms a self-assembled optical Fabry-Pérot microcavity with a fundamental mode in the visible range (long-range separation distance about 100-200 nanometres) and a tunable equilibrium configuration. Furthermore, by placing an excitonic material in the microcavity region, we are able to realize hybrid light-matter states (polaritons4-6), whose properties, such as coupling strength and eigenstate composition, can be controlled in real time by the concentration of ligand molecules in the solution and light pressure. These Casimir microcavities could find future use as sensitive and tunable platforms for a variety of applications, including opto-mechanics7, nanomachinery8 and cavity-induced polaritonic chemistry9.

18.
J Org Chem ; 86(17): 11361-11369, 2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34347465

ABSTRACT

The concise and efficient one-pot synthesis of 2-R-naphtho[2,3-b]thiophene-4,9-diones from 2-bromo-1,4-naphthoquinone and alkynes has been developed. The reaction proceeds through the formation of 2-(R-ethynyl)-1,4-naphthoquinones, which undergo transformation with Na2S2O3 to 2-R-naphtho[2,3-b]thiophene-4,9-diones via C-H sulfuration, accompanied by the formation of the aromatic Bunte salt, followed by its air oxidation and 5-endo-dig cyclization. The protocol is characterized by simplicity, good tolerance for functional groups, relatively mild conditions, and commercially available starting compounds.

19.
Nat Nanotechnol ; 16(9): 970-974, 2021 09.
Article in English | MEDLINE | ID: mdl-34294910

ABSTRACT

Nanostructured dielectric metasurfaces offer unprecedented opportunities to manipulate light by imprinting an arbitrary phase gradient on an impinging wavefront1. This has resulted in the realization of a range of flat analogues to classical optical components, such as lenses, waveplates and axicons2-6. However, the change in linear and angular optical momentum7 associated with phase manipulation also results in previously unexploited forces and torques that act on the metasurface itself. Here we show that these optomechanical effects can be utilized to construct optical metavehicles-microscopic particles that can travel long distances under low-intensity plane-wave illumination while being steered by the polarization of the incident light. We demonstrate movement in complex patterns, self-correcting motion and an application as transport vehicles for microscopic cargoes, which include unicellular organisms. The abundance of possible optical metasurfaces attests to the prospect of developing a wide variety of metavehicles with specialized functional behaviours.


Subject(s)
Microscopy , Nanostructures/chemistry , Optical Devices , Lenses , Light , Motion , Surface Properties/radiation effects
20.
Opt Lett ; 46(15): 3584-3587, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34329230

ABSTRACT

Thermal emission is a universal phenomenon of stochastic electromagnetic emission from absorbing bodies at elevated temperatures. A defining feature of this emission is the monotonic and rapid growth of its intensity with the object's temperature for most known materials. This growth originates from the Bose-Einstein statistics of the thermal photonic field. The fact that the material's ability to emit light may change with temperature, however, is often overlooked. Here, we carry out a theoretical study of thermal emission from structures incorporating two-level media. We investigate this effect in a range of geometries including thin films and compact nanoparticles and establish the general dependencies in the evolution of thermal emission from such systems. Thermal emission turns out to be essentially non-Planckian and exhibits a universal asymptotic behavior in the limit of high temperatures. These results might have important implications for the design of thermal energy harvesting and thermal vision systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...