Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
NPJ Genom Med ; 9(1): 33, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811554

ABSTRACT

To predict outcome to combination bevacizumab (BVZ) therapy, we employed cell-free DNA (cfDNA) to determine chromosomal instability (CIN), nucleosome footprints (NF) and methylation profiles in metastatic colorectal cancer (mCRC) patients. Low-coverage whole-genome sequencing (LC-WGS) was performed on matched tumor and plasma samples, collected from 74 mCRC patients from the AC-ANGIOPREDICT Phase II trial (NCT01822444), and analysed for CIN and NFs. A validation cohort of plasma samples from the University Medical Center Mannheim (UMM) was similarly profiled. 61 AC-ANGIOPREDICT plasma samples collected before and following BVZ treatment were selected for targeted methylation sequencing. Using cfDNA CIN profiles, AC-ANGIOPREDICT samples were subtyped with 92.3% accuracy into low and high CIN clusters, with good concordance observed between matched plasma and tumor. Improved survival was observed in CIN-high patients. Plasma-based CIN clustering was validated in the UMM cohort. Methylation profiling identified differences in CIN-low vs. CIN high (AUC = 0.87). Moreover, significant methylation score decreases following BVZ was associated with improved outcome (p = 0.013). Analysis of CIN, NFs and methylation profiles from cfDNA in plasma samples facilitates stratification into CIN clusters which inform patient response to treatment.

2.
Eur J Heart Fail ; 25(8): 1256-1266, 2023 08.
Article in English | MEDLINE | ID: mdl-37191081

ABSTRACT

AIMS: To evaluate the prevalence of pathogenic variants in genes associated with dilated cardiomyopathy (DCM) in a clinical trial population with heart failure and reduced ejection fraction (HFrEF) and describe the baseline characteristics by variant carrier status. METHODS AND RESULTS: This was a post hoc analysis of the Phase 3 PARADIGM-HF trial. Forty-four genes, divided into three tiers, based on definitive, moderate or limited evidence of association with DCM, were assessed for rare predicted loss-of-function (pLoF) variants, which were prioritized using ClinVar annotations, measures of gene transcriptional output and evolutionary constraint, and pLoF confidence predictions. Prevalence was reported for pLoF variant carriers based on DCM-associated gene tiers. Clinical features were compared between carriers and non-carriers. Of the 1412 HFrEF participants with whole-exome sequence data, 68 (4.8%) had at least one pLoF variant in the 8 tier-1 genes (definitive/strong association with DCM), with Titin being most commonly affected. The prevalence increased to 7.5% when considering all 44 genes. Among patients with idiopathic aetiology, 10.0% (23/229) had tier-1 variants only and 12.6% (29/229) had tier-1, -2 or -3 variants. Compared to non-carriers, tier-1 carriers were younger (4 years; adjusted p-value [padj ] = 4 × 10-3 ), leaner (27.8 kg/m2 vs. 29.4 kg/m2 ; padj = 3.2 × 10-3 ), had lower ejection fraction (27.3% vs. 29.8%; padj = 5.8 × 10-3 ), and less likely to have ischaemic aetiology (37.3% vs. 67.4%; padj = 4 × 10-4 ). CONCLUSION: Deleterious pLoF variants in genes with definitive/strong association with DCM were identified in ∼5% of HFrEF patients from a PARADIGM-HF trial subset, who were younger, had lower ejection fraction and were less likely to have had an ischaemic aetiology.


Subject(s)
Cardiomyopathy, Dilated , Heart Failure , Humans , Cardiomyopathy, Dilated/epidemiology , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/complications , Heart Failure/epidemiology , Heart Failure/genetics , Stroke Volume
3.
Front Cell Dev Biol ; 8: 559553, 2020.
Article in English | MEDLINE | ID: mdl-33330445

ABSTRACT

Neuroblastoma (NB) is a neural crest-derived tumor, which develops before birth or in early childhood, with metastatic dissemination typically preceding diagnosis. Tumors are characterized by a highly heterogeneous combination of cellular phenotypes demonstrating varying degrees of differentiation along different lineage pathways, and possessing distinct super-enhancers and core regulatory circuits, thereby leading to highly varied malignant potential and divergent clinical outcomes. Cytoskeletal reorganization is fundamental to cellular transformations, including the processes of cellular differentiation and epithelial to mesenchymal transition (EMT), previously reported by our lab and others to coincide with chemotherapy resistance and enhanced metastatic ability of tumor cells. This study set out to investigate the ability of the neuronal miR-124-3p to reverse the cellular transformation associated with drug resistance development and assess the anti-oncogenic role of this miRNA in in vitro models of drug-resistant adrenergic (ADRN) and mesenchymal (MES) neuroblastoma cell lines. Low expression of miR-124-3p in a cohort of neuroblastomas was significantly associated with poor overall and progression-free patient survival. Over-expression of miR-124-3p in vitro inhibited cell viability through the promotion of cell cycle arrest and induction of apoptosis in addition to sensitizing drug-resistant cells to chemotherapeutics in a panel of morphologically distinct neuroblastoma cell lines. Finally, we describe miR-124-3p direct targeting and repression of key up-regulated cytoskeletal genes including MYH9, ACTN4 and PLEC and the reversal of the resistance-associated EMT and enhanced invasive capacity previously reported in our in vitro model (SK-N-ASCis24).

4.
Int J Cancer ; 147(10): 2891-2901, 2020 11 15.
Article in English | MEDLINE | ID: mdl-32700762

ABSTRACT

Antibodies targeting the human epidermal growth factor receptor (EGFR) are used for the treatment of RAS wild-type metastatic colorectal cancer. A significant proportion of patients remains unresponsive to this therapy. Here, we performed a reverse-phase protein array-based (phospho)protein analysis of 63 KRAS, NRAS, BRAF and PIK3CA wild-type metastatic CRC tumours. Responses of tumours to anti-EGFR therapy with cetuximab were recorded in patient-derived xenograft (PDX) models. Unsupervised hierarchical clustering of pretreatment tumour tissue identified three clusters, of which Cluster C3 was exclusively composed of responders. Clusters C1 and C2 exhibited mixed responses. None of the three protein clusters exhibited a significant correlation with transcriptome-based subtypes. Analysis of protein signatures across all PDXs identified 14 markers that discriminated cetuximab-sensitive and cetuximab-resistant tumours: PDK1 (S241), caspase-8, Shc (Y317), Stat3 (Y705), p27, GSK-3ß (S9), HER3, PKC-α (S657), EGFR (Y1068), Akt (S473), S6 ribosomal protein (S240/244), HER3 (Y1289), NF-κB-p65 (S536) and Gab-1 (Y627). Least absolute shrinkage and selection operator and binominal logistic regression analysis delivered refined protein signatures for predicting response to cetuximab. (Phospo-)protein analysis of matched pretreated and posttreated models furthermore showed significant reduction of Gab-1 (Y627) and GSK-3ß (S9) exclusively in responding models, suggesting novel targets for treatment.


Subject(s)
Cetuximab/administration & dosage , Colorectal Neoplasms/drug therapy , Liver Neoplasms/drug therapy , Liver Neoplasms/secondary , Phosphoproteins/metabolism , Proteomics/methods , Animals , Cell Proliferation/drug effects , Cetuximab/pharmacology , Class I Phosphatidylinositol 3-Kinases/genetics , Cluster Analysis , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Female , GTP Phosphohydrolases/genetics , Humans , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Male , Membrane Proteins/genetics , Mice , Phosphoproteins/drug effects , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Unsupervised Machine Learning , Xenograft Model Antitumor Assays
5.
Sci Rep ; 10(1): 9778, 2020 06 17.
Article in English | MEDLINE | ID: mdl-32555399

ABSTRACT

Chemotherapy combined with the angiogenesis inhibitor bevacizumab (BVZ) is approved as a first-line treatment in metastatic colorectal cancer (mCRC). Limited clinical benefit underpins the need for improved understanding of resistance mechanisms and the elucidation of novel predictive biomarkers. We assessed germline single-nucleotide polymorphisms (SNPs) in 180 mCRC patients (Angiopredict [APD] cohort) treated with combined BVZ + chemotherapy and investigated previously reported predictive SNPs. We further employed a machine learning approach to identify novel associations. In the APD cohort IL8 rs4073 any A carriers, compared to TT carriers, were associated with worse progression-free survival (PFS) (HR = 1.51, 95% CI:1.03-2.22, p-value = 0.037) and TBK1 rs7486100 TT carriers, compared to any A carriers, were associated with worse PFS in KRAS wild-type (wt) patients (HR = 1.94, 95% CI:1.04-3.61, p-value = 0.037), replicating previous findings. Machine learning identified novel associations in genes encoding the inflammasome protein NLRP1 and the ER protein Sarcalumenin (SRL). A negative association between PFS and carriers of any A at NLRP1 rs12150220 and AA for SRL rs13334970 in APD KRAS wild-type patients (HR = 4.44, 95% CI:1.23-16.13, p-value = 0.005), which validated in two independent clinical cohorts involving BVZ, MAVERICC and TRIBE. Our findings highlight a key role for inflammation and ER signalling underpinning BVZ + chemotherapy responsiveness.


Subject(s)
Angiogenesis Inhibitors/therapeutic use , Bevacizumab/therapeutic use , Biomarkers, Tumor/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Endoplasmic Reticulum/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Adaptor Proteins, Signal Transducing/genetics , Aged , Apoptosis Regulatory Proteins/genetics , Cohort Studies , Colorectal Neoplasms/therapy , Combined Modality Therapy , Endoplasmic Reticulum/metabolism , Female , Genetic Association Studies , Humans , Inflammation/genetics , Machine Learning , Male , Membrane Proteins/genetics , Middle Aged , NLR Proteins , Outcome and Process Assessment, Health Care/methods , Polymorphism, Single Nucleotide , Progression-Free Survival , Signal Transduction
6.
Nat Commun ; 9(1): 4112, 2018 10 05.
Article in English | MEDLINE | ID: mdl-30291241

ABSTRACT

Increased copy number alterations (CNAs) indicative of chromosomal instability (CIN) have been associated with poor cancer outcome. Here, we study CNAs as potential biomarkers of bevacizumab (BVZ) response in metastatic colorectal cancer (mCRC). We cluster 409 mCRCs in three subclusters characterized by different degrees of CIN. Tumors belonging to intermediate-to-high instability clusters have improved outcome following chemotherapy plus BVZ versus chemotherapy alone. In contrast, low instability tumors, which amongst others consist of POLE-mutated and microsatellite-instable tumors, derive no further benefit from BVZ. This is confirmed in 81 mCRC tumors from the phase 2 MoMa study involving BVZ. CNA clusters overlap with CRC consensus molecular subtypes (CMS); CMS2/4 xenografts correspond to intermediate-to-high instability clusters and respond to FOLFOX chemotherapy plus mouse avastin (B20), while CMS1/3 xenografts match with low instability clusters and fail to respond. Overall, we identify copy number load as a novel potential predictive biomarker of BVZ combination therapy.


Subject(s)
Adenocarcinoma/genetics , Antineoplastic Agents, Immunological/therapeutic use , Bevacizumab/therapeutic use , Colorectal Neoplasms/genetics , DNA Copy Number Variations , Adenocarcinoma/drug therapy , Aged , Animals , Chromosomal Instability , Colorectal Neoplasms/drug therapy , Female , Humans , Male , Mice , Middle Aged , Retrospective Studies , Xenograft Model Antitumor Assays
7.
Oncotarget ; 8(26): 42949-42961, 2017 Jun 27.
Article in English | MEDLINE | ID: mdl-28487489

ABSTRACT

Bevacizumab (bvz) is currently employed as an anti-angiogenic therapy across several cancer indications. Bvz response heterogeneity has been well documented, with only 10-15% of colorectal cancer (CRC) patients benefitting in general. For other patients, clinical efficacy is limited and side effects are significant. This reinforces the need for a robust predictive biomarker of response. To identify such a biomarker, we performed a DNA microarray-based transcriptional profiling screen with primary endothelial cells (ECs) isolated from normal and tumour colon tissues. Thirteen separate populations of tumour-associated ECs and 10 of normal ECs were isolated using fluorescence-activated cell sorting. We hypothesised that VEGF-induced genes were overexpressed in tumour ECs; these genes could relate to bvz response and serve as potential predictive biomarkers. Transcriptional profiling revealed a total of 2,610 differentially expressed genes when tumour and normal ECs were compared. To explore their relation to bvz response, the mRNA expression levels of top-ranked genes were examined using quantitative PCR in 30 independent tumour tissues from CRC patients that received bvz in the adjuvant setting. These analyses revealed that the expression of MMP12 and APLN mRNA was significantly higher in bvz non-responders compared to responders. At the protein level, high APLN expression was correlated with poor progression-free survival in bvz-treated patients. Thus, high APLN expression may represent a novel predictive biomarker for bvz unresponsiveness.


Subject(s)
Antineoplastic Agents, Immunological/therapeutic use , Apelin/genetics , Bevacizumab/therapeutic use , Biomarkers, Tumor , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Adult , Aged , Aged, 80 and over , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Apelin/metabolism , Colorectal Neoplasms/mortality , Colorectal Neoplasms/pathology , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Male , Middle Aged , Neoplasm Staging , Prognosis , Signal Transduction/drug effects , Survival Analysis , Treatment Outcome , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
8.
J Comput Biol ; 24(10): 969-980, 2017 Oct.
Article in English | MEDLINE | ID: mdl-27627442

ABSTRACT

The development of colorectal cancer (CRC)-the third most common cancer type-has been associated with deregulations of cellular mechanisms stimulated by both genetic and epigenetic events. StatEpigen is a manually curated and annotated database, containing information on interdependencies between genetic and epigenetic signals, and specialized currently for CRC research. Although StatEpigen provides a well-developed graphical user interface for information retrieval, advanced queries involving associations between multiple concepts can benefit from more detailed graph representation of the integrated data. This can be achieved by using a graph database (NoSQL) approach. Data were extracted from StatEpigen and imported to our newly developed EpiGeNet, a graph database for storage and querying of conditional relationships between molecular (genetic and epigenetic) events observed at different stages of colorectal oncogenesis. We illustrate the enhanced capability of EpiGeNet for exploration of different queries related to colorectal tumor progression; specifically, we demonstrate the query process for (i) stage-specific molecular events, (ii) most frequently observed genetic and epigenetic interdependencies in colon adenoma, and (iii) paths connecting key genes reported in CRC and associated events. The EpiGeNet framework offers improved capability for management and visualization of data on molecular events specific to CRC initiation and progression.


Subject(s)
Colorectal Neoplasms/genetics , Computational Biology/methods , Computer Graphics , Epigenesis, Genetic , Gene Regulatory Networks , Software , Databases, Factual , Humans
9.
Digestion ; 94(3): 129-137, 2016.
Article in English | MEDLINE | ID: mdl-27756074

ABSTRACT

BACKGROUND/AIMS: This study is aimed at analyzing the survival rates and prognostic factors of stage IV colorectal cancer patients from 3 European cohorts undergoing combination chemotherapy with bevacizumab. METHODS: Progression free-survival (PFS) and overall survival (OS) were analyzed in 172 patients using the Kaplan-Meier method and uni- and multivariable Cox proportional hazards regression models. RESULTS: The median PFS was 9.7 and the median OS 27.4 months. Patients treated at centers in Germany (n = 97), Ireland (n = 32), and The Netherlands (n = 43) showed a median PFS of 9.9, 9.2, and 9.7 months, OS of 34.0, 20.5, and 25.1 months, respectively. Patients >65 years had a significantly shorter PFS (9.5 vs. 9.8 months) but not OS (27.4 vs. 27.5 months) than younger patients. High tumor grade (G3/4) was associated with a shorter PFS, T4 classification with both shorter PFS and OS. Fluoropyrimidine (FP) chemotherapy backbones (doublets and single) had comparable outcomes, while patients not receiving FP backbones had a shorter PFS. In multivariable analysis, age and non-FP backbone were associated with inferior PFS, T4 classification and therapy line >2nd were significantly associated with poor PFS and OS. CONCLUSION: The observed survival rates confirm previous studies and demonstrate reproducible benefits of combination bevacizumab regimens. Classification T4, non-FP chemotherapy backbone, and age >65 were associated with inferior outcome.


Subject(s)
Angiogenesis Inhibitors/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Bevacizumab/therapeutic use , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/mortality , Adult , Aged , Aged, 80 and over , Clinical Trials, Phase II as Topic , Colorectal Neoplasms/diagnostic imaging , Colorectal Neoplasms/pathology , Disease-Free Survival , Female , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Proportional Hazards Models , Prospective Studies , Pyrimidines/therapeutic use , Retrospective Studies , Survival Rate , Tomography, X-Ray Computed , Treatment Outcome , Ultrasonography
10.
Free Radic Biol Med ; 99: 244-258, 2016 10.
Article in English | MEDLINE | ID: mdl-27519269

ABSTRACT

Facioscapulohumeral dystrophy (FSHD) is one of the three most common muscular dystrophies in the Western world, however, its etiology remains only partially understood. Here, we provide evidence of constitutive DNA damage in in vitro cultured myoblasts isolated from FSHD patients and demonstrate oxidative DNA damage implication in the differentiation of these cells into phenotypically-aberrant myotubes. Double homeobox 4 (DUX4), the major actor in FSHD pathology induced DNA damage accumulation when overexpressed in normal human myoblasts, and RNAi-mediated DUX4 inhibition reduced the level of DNA damage in FSHD myoblasts. Addition of tempol, a powerful antioxidant, to the culture medium of proliferating DUX4-transfected myoblasts and FSHD myoblasts reduced the level of DNA damage, suggesting that DNA alterations are mainly due to oxidative stress. Antioxidant treatment during the myogenic differentiation of FSHD myoblasts significantly reduced morphological defects in myotube formation. We propose that the induction of DNA damage is a novel function of the DUX4 protein affecting myogenic differentiation of FSHD myoblasts.


Subject(s)
Homeodomain Proteins/genetics , Muscle Fibers, Skeletal/metabolism , Muscular Dystrophy, Facioscapulohumeral/genetics , Myoblasts/metabolism , Oxidative Stress , Antioxidants/pharmacology , Case-Control Studies , Cell Differentiation , Cyclic N-Oxides/pharmacology , DNA Damage , Gene Expression Profiling , Gene Expression Regulation , Gene Ontology , Homeodomain Proteins/antagonists & inhibitors , Homeodomain Proteins/metabolism , Humans , Molecular Sequence Annotation , Multigene Family , Muscle Fibers, Skeletal/pathology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Dystrophy, Facioscapulohumeral/metabolism , Muscular Dystrophy, Facioscapulohumeral/pathology , Myoblasts/pathology , Primary Cell Culture , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Spin Labels , Transfection
11.
Gene ; 580(2): 134-143, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26774800

ABSTRACT

Mantle cell lymphoma (MCL) is a rare lymphoma caused by the t(11:14) juxtaposing the cyclin D1 (CCND1) locus on chromosome 11 and the immunoglobulin heavy chain (IgH) locus on chromosome 14. Several new treatments are proposed for MCL, including histone deacetylase inhibitors (HDACi). We have studied gene expression and chromatin organization in the translocated 11q13 locus in MCL cells as compared to lymphoblastoid cell lines as well as the effect of HDACi abexinostat on chromatin organization and gene expression in the 11q13 locus. We have identified a cluster of genes overexpressed in the translocation region on chromosome 11 in MCL cells. Abexinostat provokes a genome-wide disaggregation of heterochromatin. The genes upregulated after the t(11;14) translocation react to the HDACi treatment by increasing their expression, but their gene promoters do not show significant alterations in H3K9Ac and H3K9me2 levels in abexinostat-treated cells.


Subject(s)
B-Lymphocytes/drug effects , Benzofurans/pharmacology , Chromatin/drug effects , Histone Deacetylase Inhibitors/pharmacology , Hydroxamic Acids/pharmacology , Lymphoma, Mantle-Cell/genetics , Transcription, Genetic/drug effects , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , Cell Line, Tumor , Chromatin/metabolism , Chromatin Assembly and Disassembly/drug effects , Chromosomes, Human, Pair 11/genetics , Chromosomes, Human, Pair 14/genetics , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lymphoma, Mantle-Cell/pathology , Promoter Regions, Genetic/drug effects , Translocation, Genetic/genetics
12.
J Cancer ; 6(8): 795-811, 2015.
Article in English | MEDLINE | ID: mdl-26185542

ABSTRACT

Abnormal DNA-methylation is well known to play an important role in cancer onset and development, and colon cancer is no exception to this rule. Recent years have seen the increased use of large-scale technologies, (such as methylation microarray assays or specific sequencing of methylated DNA), to determine whole genome profiles of CpG island methylation in tissue samples. Comprehensive study of methylation array data from transcriptome high-throughput platforms permits determination of gene methylation markers, important for cancer profiling. Here, three large-scale methylation datasets for colon cancer have been compared to determine locus-specific methylation agreement. These data are from the GEO database, where colon cancer and apparently healthy adjacent tissues are represented by sample sizes 125 and 29 respectively in the first dataset, 24 of each in the second and 118 of each in the third. Several data analysis techniques have been employed, including Clustering, Discriminant Principal Component Analysis, Discriminant Analysis and ROC curves, in order (i) to obtain a better insight on the locus-specific concomitant methylation structures for these diverse data and (ii) to determine a robust potential marker set for indicative screening, drawn from all data taken together. The extent of the agreement between the analysed datasets is reported. Further, potential screening methylation markers, for which methylation profiles are consistent across tissue samples and several datasets, are highlighted and discussed.

13.
Microarrays (Basel) ; 4(4): 630-46, 2015 Nov 23.
Article in English | MEDLINE | ID: mdl-27600244

ABSTRACT

Recently, considerable attention has been paid to gene expression-based classifications of colorectal cancers (CRC) and their association with patient prognosis. In addition to changes in gene expression, abnormal DNA-methylation is known to play an important role in cancer onset and development, and colon cancer is no exception to this rule. Large-scale technologies, such as methylation microarray assays and specific sequencing of methylated DNA, have been used to determine whole genome profiles of CpG island methylation in tissue samples. In this article, publicly available microarray-based gene expression and methylation data sets are used to characterize expression subtypes with respect to locus-specific methylation. A major objective was to determine whether integration of these data types improves previously characterized subtypes, or provides evidence for additional subtypes. We used unsupervised clustering techniques to determine methylation-based subgroups, which are subsequently annotated with three published expression-based classifications, comprising from three to six subtypes. Our results showed that, while methylation profiles provide a further basis for segregation of certain (Inflammatory and Goblet-like) finer-grained expression-based subtypes, they also suggest that other finer-grained subtypes are not distinctive and can be considered as a single subtype.

14.
Blood ; 123(13): 2044-53, 2014 Mar 27.
Article in English | MEDLINE | ID: mdl-24452204

ABSTRACT

In mantle cell lymphoma (MCL), one allele of the cyclin D1 (Ccnd1) gene is translocated from its normal localization on chromosome 11 to chromosome 14. This is considered as the crucial event in the transformation process of a normal naive B-cell; however, the actual molecular mechanism leading to Ccnd1 activation remains to be deciphered. Using a combination of three-dimensional and immuno-fluorescence in situ hybridization experiments, the radial position of the 2 Ccnd1 alleles was investigated in MCL-derived cell lines and malignant cells from affected patients. The translocated Ccnd1 allele was observed significantly more distant from the nuclear membrane than its nontranslocated counterpart, with a very high proportion of IgH-Ccnd1 chromosomal segments localized next to a nucleolus. These perinucleolar areas were found to contain active RNA polymerase II (PolII) clusters. Nucleoli are rich in nucleolin, a potent transcription factor that we found to bind sites within the Ccnd1 gene specifically in MCL cells and to activate Ccnd1 transcription. We propose that the Ccnd1 transcriptional activation in MCL cells relates to the repositioning of the rearranged IgH-Ccnd1-carrying chromosomal segment in a nuclear territory with abundant nucleolin and active PolII molecules. Similar transforming events could occur in Burkitt and other B-cell lymphomas.


Subject(s)
Cell Nucleolus/metabolism , Cyclin D1/metabolism , Gene Expression Regulation, Neoplastic , Lymphoma, Mantle-Cell/genetics , Phosphoproteins/metabolism , RNA-Binding Proteins/metabolism , Transcriptional Activation , Active Transport, Cell Nucleus/physiology , CCCTC-Binding Factor , Cell Line, Tumor , Cyclin D1/genetics , Genes, Neoplasm , HeLa Cells , Humans , Protein Transport , Repressor Proteins/metabolism , Nucleolin
15.
J Cell Mol Med ; 18(2): 208-17, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24341522

ABSTRACT

Muscular dystrophy is a condition potentially predisposing for cancer; however, currently, only Myotonic dystrophy patients are known to have a higher risk of cancer. Here, we have searched for a link between facioscapulohumeral dystrophy (FSHD) and cancer by comparing published transcriptome signatures of FSHD and various malignant tumours and have found a significant enrichment of cancer-related genes among the genes differentially expressed in FSHD. The analysis has shown that gene expression profiles of FSHD myoblasts and myotubes resemble that of Ewing's sarcoma more than that of other cancer types tested. This is the first study demonstrating a similarity between FSHD and cancer cell expression profiles, a finding that might indicate the existence of a common step in the pathogenesis of these two diseases.


Subject(s)
Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Muscular Dystrophy, Facioscapulohumeral/genetics , Myoblasts/metabolism , Neoplasm Proteins/genetics , Sarcoma, Ewing/genetics , Transcriptome , Chromosome Aberrations , Chromosomes, Human, Pair 4 , Epigenesis, Genetic , Gene Expression , Gene Expression Profiling , Humans , Muscle Fibers, Skeletal/pathology , Muscle, Skeletal/pathology , Muscular Dystrophy, Facioscapulohumeral/metabolism , Muscular Dystrophy, Facioscapulohumeral/pathology , Myoblasts/pathology , Neoplasm Proteins/metabolism , Oligonucleotide Array Sequence Analysis , Primary Cell Culture , Sarcoma, Ewing/metabolism , Sarcoma, Ewing/pathology
16.
J Biol Chem ; 288(49): 34989-5002, 2013 Dec 06.
Article in English | MEDLINE | ID: mdl-24145033

ABSTRACT

Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant hereditary neuromuscular disorder linked to the deletion of an integral number of 3.3-kb-long macrosatellite repeats (D4Z4) within the subtelomeric region of chromosome 4q. Most genes identified in this region are overexpressed in FSHD myoblasts, including the double homeobox genes DUX4 and DUX4c. We have carried out a simultaneous miRNome/transcriptome analysis of FSHD and control primary myoblasts. Of 365 microRNAs (miRNAs) analyzed in this study, 29 were found to be differentially expressed between FSHD and normal myoblasts. Twenty-one microRNAs (miR-1, miR-7, miR-15a, miR-22, miR-30e, miR-32, miR-107, miR-133a, miR-133b, miR-139, miR-152, miR-206, miR-223, miR-302b, miR-331, miR-362, miR-365, miR-382, miR-496, miR-532, miR-654, and miR-660) were up-regulated, and eight were down-regulated (miR-15b, miR-20b, miR-21, miR-25, miR-100, miR-155, miR-345, and miR-594). Twelve of the miRNAs up-regulated in FHSD were also up-regulated in the cells ectopically expressing DUX4c, suggesting that this gene could regulate miRNA gene transcription. The myogenic miRNAs miR-1, miR-133a, miR-133b, and miR-206 were highly expressed in FSHD myoblasts, which nonetheless did not prematurely enter myogenic differentiation. This could be accounted for by the fact that in FSHD myoblasts, functionally important target genes, including cell cycle, DNA damage, and ubiquitination-related genes, escape myogenic microRNA-induced repression.


Subject(s)
MicroRNAs/genetics , MicroRNAs/metabolism , Muscular Dystrophy, Facioscapulohumeral/genetics , Muscular Dystrophy, Facioscapulohumeral/metabolism , Myoblasts, Skeletal/metabolism , Adult , Cell Differentiation/genetics , Cells, Cultured , Down-Regulation , Female , Gene Expression Profiling , Homeodomain Proteins/genetics , Humans , Male , Middle Aged , Muscle Development/genetics , Muscular Dystrophy, Facioscapulohumeral/pathology , Myoblasts, Skeletal/pathology , Up-Regulation , Young Adult
17.
BMC Genomics ; 14: 265, 2013 Apr 18.
Article in English | MEDLINE | ID: mdl-23597168

ABSTRACT

BACKGROUND: miRNA profiling performed in myogenic cells and biopsies from skeletal muscles has previously identified miRNAs involved in myogenesis. RESULTS: Here, we have performed miRNA transcriptome profiling in human affinity-purified CD56+ myoblasts induced to differentiate in vitro. In total, we have identified 60 miRNAs differentially expressed during myogenic differentiation. Many were not known for being differentially expressed during myogenic differentiation. Of these, 14 (miR-23b, miR-28, miR-98, miR-103, miR-107, miR-193a, miR-210, miR-324-5p, miR-324-3p, miR-331, miR-374, miR-432, miR-502, and miR-660) were upregulated and 6 (miR-31, miR-451, miR-452, miR-565, miR-594 and miR-659) were downregulated. mRNA transcriptome profiling performed in parallel resulted in identification of 6,616 genes differentially expressed during myogenic differentiation. CONCLUSIONS: This simultaneous miRNA/mRNA transcriptome profiling allowed us to predict with high accuracy target genes of myogenesis-related microRNAs and to deduce their functions.


Subject(s)
Cell Differentiation/genetics , MicroRNAs/genetics , Muscle Development/genetics , Muscle, Skeletal/metabolism , Myoblasts/metabolism , RNA, Messenger/metabolism , CD56 Antigen/genetics , Down-Regulation , Gene Expression Profiling , Humans , MicroRNAs/physiology , RNA, Messenger/genetics , Up-Regulation
18.
Virol J ; 10: 119, 2013 Apr 16.
Article in English | MEDLINE | ID: mdl-23590857

ABSTRACT

BACKGROUND: Because latent Epstein Barr (EBV)-infection is a specific characteristic of malignant nasopharyngeal carcinoma (NPC), various molecules of viral origin are obvious candidate biomarkers in this disease. In a previous study, we could show in a few clinical samples that it was possible to detect a category of EBV microRNAs called miR-BARTs in the plasma of at least a fraction of NPC patients. The first aim of the present study was to investigate the status of circulating miR-BART17-5p (one of the miR-BARTs hereafter called miR-BART17) and EBV DNA in a larger series of NPC plasma samples. The second aim was to determine whether or not circulating miR-BART17 was carried by plasma exosomes. PATIENTS AND METHODS: Plasma samples were collected from 26 NPC patients and 10 control donors, including 9 patients with non-NPC Head and Neck squamous cell carcinoma and one healthy EBV carrier. Concentrations of miR-BART17 and two cellular microRNAs (hsa-miR-16 and -146a) were assessed by real-time quantitative PCR with spike-in normalization and absolute quantification. In addition, for 2 patients, exosome distributions of miR-BART17 and miR-16 were investigated following plasma lipoprotein fractionation by isopycnic density gradient ultrcentrifugation. RESULTS: The miR-BART17 was significantly more abundant in plasma samples from NPC patients compared to non-NPC donors. Above a threshold of 506 copies/mL, detection of miR-BART17 was highly specific for NPC patients (ROC curve analysis: AUC=0.87 with true positive rate = 0.77, false positive rate = 0.10). In this relatively small series, the concentration of plasma miR-BART17 and the plasma EBV DNA load were not correlated. When plasma samples were fractionated, miR-BART17 co-purified with a protein-rich fraction but not with exosomes. CONCLUSIONS: Detection of high concentrations of plasma miR-BART17 is consistent in NPC patients. This parameter is, at least in part, independent of the viral DNA load. Circulating miR-BART17 does not co-purify with exosomes.


Subject(s)
Biomarkers/blood , Herpesvirus 4, Human/genetics , MicroRNAs/blood , Nasopharyngeal Neoplasms/pathology , Nasopharyngeal Neoplasms/virology , Plasma/chemistry , RNA, Viral/blood , Adult , Aged , Biological Transport , Carcinoma , DNA, Viral/blood , Exosomes/virology , Female , Humans , Male , MicroRNAs/metabolism , Middle Aged , Nasopharyngeal Carcinoma , RNA, Viral/metabolism , Real-Time Polymerase Chain Reaction
19.
PLoS One ; 8(1): e53033, 2013.
Article in English | MEDLINE | ID: mdl-23326377

ABSTRACT

Little is known about differences between induced pluripotent stem cells produced from tissues originating from the same germ layer. We have generated human myoblast-derived iPS cells by retroviral transduction of human primary myoblasts with the OCT3/4, SOX2, KLF4 and MYC coding sequences and compared them to iPS produced from human primary fibroblasts. When cultivated in vitro, these iPS cells proved similar to human embryonic stem cells in terms of morphology, expression of embryonic stemness markers and gene promoter methylation patterns. Embryonic bodies were derived that expressed endodermal, mesodermal as well as ectodermal markers. A comparative analysis of transcription patterns revealed significant differences in the gene expression pattern between myoblast- and fibroblast-derived iPS cells. However, these differences were reduced in the mesenchymal stem cells derived from the two iPS cell types were compared.


Subject(s)
Cell Differentiation/genetics , Fibroblasts/metabolism , Gene Expression Profiling , Induced Pluripotent Stem Cells/metabolism , Myoblasts/metabolism , Animals , Cells, Cultured , Embryoid Bodies/cytology , Embryoid Bodies/metabolism , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Fibroblasts/cytology , Germ Layers/cytology , Germ Layers/metabolism , Humans , Induced Pluripotent Stem Cells/cytology , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/genetics , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mice , Muscle Development/genetics , Myoblasts/cytology , Octamer Transcription Factor-3/genetics , Oligonucleotide Array Sequence Analysis , Proto-Oncogene Proteins c-myc/genetics , Retroviridae/genetics , SOXB1 Transcription Factors/genetics , Transduction, Genetic
20.
PLoS One ; 7(10): e47157, 2012.
Article in English | MEDLINE | ID: mdl-23118866

ABSTRACT

BACKGROUND: It becomes increasingly evident that nuclesomes are far from being identical to each other. This nucleosome diversity is due partially to the existence of histone variants encoded by separate genes. Among the known histone variants the less characterized are H2A.Bbd and different forms of macroH2A. This is especially true in the case of H2A.Bbd as there are still no commercially available antibodies specific to H2A.Bbd that can be used for chromatin immunoprecipitation (ChIP). METHODS: We have generated HeLa S3 cell lines stably expressing epitope-tagged versions of macroH2A1.1, H2A.Bbd or canonical H2A and analyzed genomic distribution of the tagged histones using ChIP-on-chip technique. RESULTS: The presence of histone H2A variants macroH2A1.1 and H2A.Bbd has been analyzed in the chromatin of several segments of human chromosomes 11, 16 and X that have been chosen for their different gene densities and chromatin status. Chromatin immunoprecipitation (ChIP) followed by hybridization with custom NimbleGene genomic microarrays demonstrated that in open chromatin domains containing tissue-specific along with housekeeping genes, the H2A.Bbd variant was preferentially associated with the body of a subset of transcribed genes. The macroH2A1.1 variant was virtually absent from some genes and underrepresented in others. In contrast, in closed chromatin domains which contain only tissue-specific genes inactive in HeLa S3 cells, both macroH2A1.1 and H2A.Bbd histone variants were present and often colocalized. CONCLUSIONS: Genomic distribution of macro H2A and H2A.Bbd does not follow any simple rule and is drastically different in open and closed genomic domains.


Subject(s)
Chromatin , Histones , Chromatin/genetics , Chromatin/metabolism , Chromatin Immunoprecipitation , Chromosomes, Human, Pair 11/genetics , Chromosomes, Human, Pair 16/genetics , Chromosomes, Human, X/genetics , Gene Expression , HeLa Cells , Histones/genetics , Histones/metabolism , Humans , Nucleosomes
SELECTION OF CITATIONS
SEARCH DETAIL