Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-28427557

ABSTRACT

Molecular oxygen is essential for aerobic organisms in order to synthesize large amounts of energy during the process of oxidative phosphorylation and it is harnessed in the form of adenosine triphosphate, the chemical energy of the cell. Oxygen is toxic for anaerobic organisms but it is also less obvious that oxygen is poisonous to aerobic organisms at higher concentrations of oxygen. For instance, oxygen toxicity is a condition resulting from the harmful effects of breathing molecular oxygen at increased partial pressures. Reactive oxygen species (ROS) are chemically reactive molecules containing oxygen that are formed as a natural byproduct of the normal metabolism of oxygen and have important roles in cell signaling and homeostasis. However, in pathological conditions ROS levels can increase dramatically. This may result in significant damage to cell structures. Living organisms have been adapted to the ROS in two ways: they can mitigate the unwanted effects through removal by the antioxidant systems and can advantageously use them as messengers in cell signaling and regulation of body functions. Some other physiological functions of ROS include the regulation of vascular tone, detection, and adaptation to hypoxia. In this review, we describe the mechanisms of oxidative damage and its relationship with the most highly studied neurodegenerative diseases.


Subject(s)
Alzheimer Disease/metabolism , Brain Ischemia/metabolism , Multiple Sclerosis/metabolism , Oxidative Stress , Parkinson Disease/metabolism , Alzheimer Disease/pathology , Animals , Brain Ischemia/pathology , Central Nervous System/metabolism , Central Nervous System/pathology , Humans , Multiple Sclerosis/pathology , Parkinson Disease/pathology , Reactive Oxygen Species/metabolism
2.
BMC Musculoskelet Disord ; 3: 15, 2002 Jun 03.
Article in English | MEDLINE | ID: mdl-12057023

ABSTRACT

BACKGROUND: Mycoplasma fermentans has been associated with rheumatoid arthritis. Recently, it was detected in the joints and blood of patients with rheumatoid arthritis, but it is not clear yet how the bacteria enter the body and reach the joints. The purpose of this study was to determine the ability of M. fermentans to induce experimental arthritis in rabbits following inoculation of the bacteria in the trachea and knee joints. METHODS: P-140 and PG-18 strains were each injected in the knee joints of 14 rabbits in order to evaluate and compare their arthritogenicity. P-140 was also injected in the trachea of 14 rabbits in order to test the ability of the bacteria to reach the joints and induce arthritis. RESULTS: M. fermentans produced an acute arthritis in rabbits. Joint swelling appeared first in rabbits injected with P-140, which caused a more severe arthritis than PG-18. Both strains were able to migrate to the uninoculated knee joints and they were detected viable in the joints all along the duration of the experiment. Changes in the synovial tissue were more severe by the end of the experiment and characterized by the infiltration of neutrophils and substitution of adipose tissue by connective tissue. Rabbits intracheally injected with P-140 showed induced arthritis and the bacteria could be isolated from lungs, blood, heart, kidney, spleen, brain and joints. CONCLUSION: M. fermentans induced arthritis regardless of the inoculation route. These findings may help explain why mycoplasmas are commonly isolated from the joints of rheumatic patients.

SELECTION OF CITATIONS
SEARCH DETAIL