Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
1.
Article in English | MEDLINE | ID: mdl-38578562

ABSTRACT

Muscle damage resulting from physical activities such as exercise triggers an immune response crucial for tissue repair and recovery. This study investigates the immune cell profiles in muscle biopsies of individuals engaged in resistance exercise (RE) and explores the impact of age and sex on the immune response following exercise-induced muscle damage. Microarray datasets from muscle biopsies of young and old subjects were analyzed, focusing on the gene expression patterns associated with immune cell activation. Genes were compared with immune cell signatures to reveal the cellular landscape during exercise. Results show that the most significant modulated gene after RE was Folliculin Interacting Protein 2 (FNIP2) a crucial regulator in cellular homeostasis. Moreover, the transcriptome was stratified based on the expression of FNIP2 and the 203 genes common to the groups obtained based on sex and age. Gene ontology analysis highlighted the FLCN-FNIP1-FNIP2 complex, which exerts as a negative feedback loop to Pi3k-Akt-mTORC1 pathway. Furthermore, we highlighted that the young females exhibit a distinct innate immune cell activation signature compared to males after a RE session. Specifically, young females demonstrate a notable overlap with dendritic cells (DCs), M1 macrophages, M2 macrophages, and neutrophils, while young males overlap with M1 macrophages, M2 macrophages, and motor neurons. Interestingly, in elderly subjects, both sexes display M1 macrophage activation signatures. Comparison of young and elderly signatures reveals an increased M1 macrophage percentage in young subjects. Additionally, common genes were identified in both sexes across different age groups, elucidating biological functions related to cell remodeling and immune activation. This study underscores the intricate interplay between sex, age, and the immune response in muscle tissue following RE, offering potential directions for future research. Nevertheless, there is a need for further studies to delve deeper and confirm the dynamics of immune cells in response to exercise-induced muscle damage.

2.
J Transl Med ; 22(1): 82, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38245790

ABSTRACT

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is a liver disorder characterized by the ac-cumulation of fat in hepatocytes without alcohol consumption. Mitochondrial dysfunction and endoplasmic reticulum (ER) stress play significant roles in NAFLD pathogenesis. The unfolded protein response in mitochondria (UPRmt) is an adaptive mechanism that aims to restore mitochondrial protein homeostasis and mitigate cellular stress. This study aimed to investigate the effects of ( +)-Lipoic acid (ALA) on UPRmt, inflammation, and oxidative stress in an in vitro model of NAFLD using HepG2 cells treated with palmitic acid and oleic acid to induce steatosis. RESULTS: Treatment with palmitic and oleic acids increased UPRmt-related proteins HSP90 and HSP60 (heat shock protein), and decreased CLPP (caseinolytic protease P), indicating ER stress activation. ALA treatment at 1 µM and 5 µM restored UPRmt-related protein levels. PA:OA (palmitic acid:oleic acid)-induced ER stress markers IRE1α (Inositol requiring enzyme-1), CHOP (C/EBP Homologous Protein), BIP (Binding Immunoglobulin Protein), and BAX (Bcl-2-associated X protein) were significantly reduced by ALA treatment. ALA also enhanced ER-mediated protein glycosylation and reduced oxidative stress, as evidenced by decreased GPX1 (Glutathione peroxidase 1), GSTP1 (glutathione S-transferase pi 1), and GSR (glutathione-disulfide reductase) expression and increased GSH (Glutathione) levels, and improved cellular senescence as shown by the markers ß-galactosidase, γH2Ax and Klotho-beta. CONCLUSIONS: In conclusion, ALA ameliorated ER stress, oxidative stress, and inflammation in HepG2 cells treated with palmitic and oleic acids, potentially offering therapeutic benefits for NAFLD providing a possible biochemical mechanism underlying ALA beneficial effects.


Subject(s)
Non-alcoholic Fatty Liver Disease , Thioctic Acid , Humans , Non-alcoholic Fatty Liver Disease/pathology , Thioctic Acid/pharmacology , Thioctic Acid/therapeutic use , Thioctic Acid/metabolism , Endoribonucleases/metabolism , Oleic Acid/pharmacology , Oleic Acid/metabolism , Protein Serine-Threonine Kinases/metabolism , Unfolded Protein Response , Oxidative Stress , Endoplasmic Reticulum Stress , Hepatocytes/pathology , Cellular Senescence , Inflammation/pathology , Palmitic Acids/metabolism , Palmitic Acids/pharmacology , Liver/pathology , Palmitic Acid/pharmacology , Palmitic Acid/metabolism
3.
Nutrients ; 15(21)2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37960198

ABSTRACT

BACKGROUND: Human Milk (HM) is a dynamic nourishment; its composition is influenced by several conditions such as gestational age, maternal diet and ethnicity. It appears important to evaluate the impact that gestational pathologies have on HM components and if their presence, as a source of oxidative stress in the mother, influence milk's redox homeostasis. To assess the effect of Preeclampsia (PE) and Gestational Diabetes Mellitus (GDM) on some aspects of human milk redox homeostasis, we chose to investigate both oxidative and antioxidant aspects, with, respectively, Lipid hydroperoxides (LOOHs) and Glutathione (GSH). METHODS: Women with PE, GDM and who were healthy were recruited for this study. Colostrum, transitional and mature milk samples were collected. GSH and LOOHs levels were measured using a spectrophotometric test. To investigate the effect of pathology on redox homeostasis, a mixed linear model with unistructural covariance structure was performed. RESULTS: A total of 120 mothers were recruited. The GSH concentration results were significantly lower in GDM women than in healthy women only in colostrum (p < 0.01). No other differences emerged. LOOHs was not detectable in almost all the samples. DISCUSSION: Our study is the first to extensively evaluate these components in the HM of women with these gestational pathologies. The main observation is that GDM can alter the GSH level of HM, mainly in colostrum.


Subject(s)
Diabetes, Gestational , Milk, Human , Pregnancy , Female , Humans , Milk, Human/chemistry , Colostrum/chemistry , Mothers , Oxidation-Reduction
4.
Int J Mol Sci ; 24(19)2023 Sep 23.
Article in English | MEDLINE | ID: mdl-37833939

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is characterized by the accumulation of lipids within hepatocytes, which compromises liver functionality following mitochondrial dysfunction and increased production of reactive oxygen species (ROS). Lipoic acid is one of the prosthetic groups of the pyruvate dehydrogenase complex also known for its ability to confer protection from oxidative damage because of its antioxidant properties. In this study, we aimed to investigate the effects of lipoic acid on lipotoxicity and mitochondrial dynamics in an in vitro model of liver steatosis. HepG2 cells were treated with palmitic acid and oleic acid (1:2) to induce steatosis, without and with 1 and 5 µM lipoic acid. Following treatments, cell proliferation and lipid droplets accumulation were evaluated. Mitochondrial functions were assessed through the evaluation of membrane potential, MitoTracker Red staining, expression of genes of the mitochondrial quality control, and analysis of energy metabolism by HPLC and Seahorse. We showed that lipoic acid treatment restored membrane potential to values comparable to control cells, as well as protected cells from mitochondrial fragmentation following PA:OA treatment. Furthermore, our data showed that lipoic acid was able to determine an increase in the expression of mitochondrial fusion genes and a decrease in mitochondrial fission genes, as well as to restore the bioenergetics of cells after treatment with palmitic acid and oleic acid. In conclusion, our data suggest that lipoic acid reduces lipotoxicity and improves mitochondrial functions in an in vitro model of steatosis, thus providing a potentially valuable pharmacological tool for NAFLD treatment.


Subject(s)
Non-alcoholic Fatty Liver Disease , Thioctic Acid , Humans , Thioctic Acid/pharmacology , Thioctic Acid/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Palmitic Acid/pharmacology , Palmitic Acid/metabolism , Oleic Acid/pharmacology , Oleic Acid/metabolism , Mitochondria/metabolism , Hepatocytes/metabolism , Oxidative Stress , Energy Metabolism , Liver/metabolism
5.
Nutrients ; 15(19)2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37836580

ABSTRACT

BACKGROUND: It is known that preeclampsia affects lactogenesis. However, data on the effects of this pathology on human milk neurobiomarker composition are not available. The aim of this study is to investigate the effects of this gestational pathology on activin A levels, a neurobiomarker known to play an important role in the development and protection of the central nervous system. METHODS: The women recruited were divided in two different study groups: preeclamptic or normotensive women. All the human milk samples were collected using the same procedure. Activin A was quantified using an Enzyme-linked immunosorbent assay (ELISA) test. To investigate the effect of preeclampsia on the activin A concentration in the three lactation phases, a mixed linear model with a unistructural covariance structure, with the mother as the random effect, and fixed effects were performed. RESULTS: Activin A was detected in all samples. There were no significant differences between preeclamptic and normotensive women. The only significant effect is related to the lactation phase: the difference between colostrum and mature milk (p < 0.01) was significant. In conclusion, these results allow us to affirm that breast milk's beneficial properties are maintained even if preeclampsia occurs.


Subject(s)
Milk, Human , Pre-Eclampsia , Pregnancy , Female , Humans , Milk, Human/chemistry , Activins/analysis , Breast Feeding
6.
Antioxidants (Basel) ; 12(9)2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37760077

ABSTRACT

Hypertension and derived cardiovascular disease (CVD) are among the leading causes of death worldwide. Increased oxidative stress and inflammatory state are involved in different alterations in endothelial functions that contribute to the onset of CVD. Polyphenols, and in particular anthocyanins, have aroused great interest for their antioxidant effects and their cardioprotective role. However, anthocyanins are rarely detected in blood serum because they are primarily metabolized by the gut microbiota. This review presents studies published to date that report the main results from clinical studies on the cardioprotective effects of anthocyanins and the role of the gut microbiota in the metabolism and bioavailability of anthocyanins and their influence on the composition of the microbiota. Even if it seems that anthocyanins have a significant effect on vascular health, more studies are required to better clarify which molecules and doses show vascular benefits without forgetting the crucial role of the microbiota.

7.
Front Nutr ; 10: 1175022, 2023.
Article in English | MEDLINE | ID: mdl-37396131

ABSTRACT

Background: The consumption of 100% fruit juices has not been associated with substantial detrimental outcomes in population studies and may even contribute to improving the cardiometabolic profile if included in a healthy balanced diet. The main contributors to such potential beneficial effects include vitamins, minerals, and likely the (poly)phenol content. This study aimed to investigate whether the (poly)phenols contained in 100% fruit juices may mediate their effects on cardiometabolic risk factors based on published randomized controlled trials (RCT). Methods: A systematic search in PubMed/MEDLINE and Embase, updated till the end of October 2022, was carried out to identify RCT providing quantitative data on (poly)phenol content in 100% fruit juices and used as an intervention to improve cardiometabolic parameters such as blood lipids, glucose, and blood pressure. Meta-regression analysis was performed to calculate the effect of the intervention [expressed as standardized mean difference and 95% confidence intervals (CI)] using the (poly)phenol content as moderator. Results: A total of 39 articles on RCT investigating the effects of 100% fruit juices on cardiometabolic risk factors reporting data on total (poly)phenol and anthocyanin content were included in the analysis. Total (poly)phenol content was substantially unrelated to any outcome investigated. In contrast, each 100 mg per day increase in anthocyanins was related to 1.53 mg/dL decrease in total cholesterol (95% CI, -2.83, -0.22, p = 0.022) and 1.94 mg/dL decrease in LDL cholesterol (95% CI, -3.46, -0.42, p = 0.012). No other potential mediating effects of anthocyanins on blood triglycerides, glucose, systolic and diastolic pressure were found, while a lowering effect on HDL cholesterol after excluding one outlier study was observed. Discussion: In conclusion, the present study showed that anthocyanins may mediate the potential beneficial effects of some 100% fruit juices on some blood lipids. Increasing the content of anthocyanins through specific fruit varieties or plant breeding could enhance the health benefits of 100% fruit juices.

8.
Metabolites ; 13(7)2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37512586

ABSTRACT

Tumor onset and its progression are strictly linked to its metabolic rewiring on the basis of the Warburg effect. In this context, fumarate emerged as a putative oncometabolite mediating cancer progression. Fumarate accumulation is usually driven by fumarate hydratase (FH) loss of function, the enzyme responsible for the reversible conversion of fumarate into malate. Fumarate accumulation acts as a double edge sword: on one hand it takes part in the metabolic rewiring of cancer cells, while on the other it also plays a crucial role in chromatin architecture reorganization. The latter is achieved by competing with a-ketoglutarate-dependent enzymes, eventually altering the cellular methylome profile, which in turn leads to its transcriptome modeling. Furthermore, in recent years, it has emerged that FH has an ability to recruit DNA double strand breaks. The accumulation of fumarate into damaged sites might also determine the DNA repair pathway in charge for the seizure of the lesion, eventually affecting the mutational state of the cells. In this work, we aimed to review the current knowledge on the role of fumarate as an oncometabolite orchestrating the cellular epigenetic landscape and DNA repair machinery.

10.
Pharmaceutics ; 15(3)2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36986812

ABSTRACT

Although mangiferin (MGN) is a natural antioxidant that could be a good candidate for the treatment of ocular diseases, its use in ophthalmology is strongly compromised due to its high lipophilicity. Its encapsulation in nanostructured lipid carriers (NLC) seems to be an interesting strategy for improving its ocular bioavailability. As reported in our previous work, MGN-NLC showed high ocular compatibility and fulfilled the nanotechnological requirements needed for ocular delivery. The aim of the present work was to investigate, in vitro and ex vivo, the capability of MGN-NLC to act as a potential drug delivery system for MGN ocular administration. The data obtained in vitro on arising retinal pigment epithelium cells (ARPE-19) did not show cytotoxic effects for blank NLC and MGN-NLC; likewise, MGN-NLC showed the maintenance of the antioxidant role of MGN by mitigating ROS (Reactive Oxygen Species) formation and GSH (glutathione) depletion induced by H2O2. In addition, the capacity of MGN-released to permeate through and accumulate into the ocular tissues was confirmed ex vivo using bovine corneas. Finally, the NLC suspension has been formulated as a freeze-dried powder using mannitol at a concentration of 3% (w/v) in order to optimize its storage for long periods of time. All this evidence suggests a potential application of MGN-NLC in the treatment of oxidative stress-related ocular diseases.

11.
Life (Basel) ; 13(2)2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36836615

ABSTRACT

Chronic myeloid leukemia (CML), BCR-ABL1-positive, is classified as a myeloproliferative characterized by Philadelphia chromosome/translocation t(9;22) and proliferating granulocytes. Despite the clinical success of tyrosine kinase inhibitors (TKi) agents in the treatment of CML, most patients have minimal residual disease contained in the bone marrow microenvironment, within which stromal cells assume a pro-inflammatory phenotype that determines their transformation in cancer-associated fibroblasts (CAF) which, in turn can play a fundamental role in resistance to therapy. Insulin-like Growth Factor Binding Protein-6 (IGFBP-6) is expressed during tumor development, and is involved in immune-escape and inflammation as well, providing a potential additional target for CML therapy. Here, we aimed at investigating the role of IGFBP-6/SHH/TLR4 axis in TKi response. We used a CML cell line, LAMA84-s, and healthy bone marrow stromal cells, HS-5, in mono- or co-culture. The two cell lines were treated with Dasatinib and/or IGFBP-6, and the expression of inflammatory markers was tested by qRT-PCR; furthermore, expression of IGFBP-6, TLR4 and Gli1 were evaluated by Western blot analysis and immumocytochemistry. The results showed that both co-culture and Dasatinib exposure induce inflammation in stromal and cancer cells so that they modulate the expression of TLR4, and these effects were more marked following IGFBP-6 pre-treatment suggesting that this molecule may confer resistance through the inflammatory processes. This phenomenon was coupled with sonic hedgehog (SHH) signaling. Indeed, our data also demonstrate that HS-5 treatment with PMO (an inducer of SHH) induces significant modulation of TLR4 and overexpression of IGFPB-6 suggesting that the two pathways are interconnected with each other and with the TLR-4 pathway. Finally, we demonstrated that pretreatment with IGFBP-6 and/or PMO restored LAMA-84 cell viability after treatment with Dasatinib, suggesting that both IGFBP-6 and SHH are involved in the resistance mechanisms induced by the modulation of TLR-4, thus indicating that the two pathways may be considered as potential therapeutic targets.

12.
Pharmaceutics ; 14(12)2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36559338

ABSTRACT

The growing interest in natural bioactive molecules, as an approach to many pathological contexts, is widely justified by the necessity to overcome the disadvantageous benefit-risk ratio related to traditional therapies. Among them, mangiferin (MGF) shows promising beneficial properties such as antioxidant, anti-inflammatory, and immunomodulatory effects. In this study, we aimed to investigate the antioxidant and anti-inflammatory properties of MGF on lipopolysaccharide (LPS)-induced lung NCI-H292 cells, focusing on its role against COVID-19 adsorption. In order to obtain this information, cells treated with LPS, with or without MGF, were analyzed performing wound healing, gene expression of inflammatory cytokines, GSH quantification, and JC-1 staining. Moreover, the inhibition of viral adsorption was evaluated microbiologically and the results were further confirmed by molecular docking analysis. In this regard, MGF downregulates the expression of several inflammatory factors, enhances GSH levels, promotes the wound healing rate, and restores the mitochondrial dysfunction caused by LPS. In addition, MGF significantly inhibits SARS-CoV-2 adsorption as shown by the gene expression of ACE2 and TMPRSS-2, and furtherly confirmed by microbiological and molecular modeling evaluation. Although more investigations are still needed, all data obtained constitute a solid background, demonstrating the cytoprotective role of MGF in inflammatory mechanisms including COVID-19 infection.

13.
Pathol Res Pract ; 237: 154038, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35932496

ABSTRACT

Colorectal cancer (CRC) is one of the most common cancers in the world. Here, we undertook an analysis of microarray datasets consisting of colon biopsies of healthy subjects and of patients affected by CRC, in order to analyze the expression levels of Chitinase domain-containing protein 1 (CHID1) and to correlate them with the clinical data available in the datasets. Analysis of expression levels showed a significant increase of CHID1 in CRC biopsies compared to the mucosa of healthy subjects. Patients' stratification by TNM staging revealed significant increases in CHID1 expression levels as the disease progressed. Furthermore, we found that mutated BRAF patients exhibit higher levels of CHID1 expression. Patients with a poor surviving prognosis at 5 years expressed high levels of CHID1 compared to wild-type. The histochemical analysis carried out by the Human Protein Atlas web tool documented moderate to strong-intensity staining detection of CHID1 protein in CRC biopsies. Furthermore, CRC patients were selected and clustered into two groups, high and low CHID1 expression levels (HCEL and LCEL). We obtained two signatures, the genes significant positive (GSPC-CHID1) and negative (GSNC-CHID1) correlated to CHID1 expression levels. The genomic deconvolution analysis between the GSPC-CHID1, GSNC-CHID1, and 17 cell immunological signatures, highlighted the potential infiltration of Macrophages M0 in HCEL patients, and potential infiltration of Macrophages M1 cells in LCEL patients. In addition, the signature GSPC-CHID1 expressed unfavorable genes to the CRC patient's survival. Mirror results were obtained for the GSNC-CHID1 signature. From the outcome of our investigation, it is possible to conclude that HCEL are associated with an unfavorable prognosis for CRC patients.


Subject(s)
Chitinases , Colorectal Neoplasms , Humans , Survival Rate , Colorectal Neoplasms/pathology , Chitinases/metabolism , Proto-Oncogene Proteins B-raf/metabolism , Prognosis , Macrophages/pathology , Carrier Proteins/genetics
14.
Antioxidants (Basel) ; 11(7)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35883804

ABSTRACT

It is well recognized that functional foods rich in antioxidants and antiinflammation agents including polyphenols, probiotics/prebiotics, and bioactive compounds have been found to have positive effects on the aging process. In particular, fruits play an important role in regular diet, promoting good health and longevity. In this study, we investigated on biological properties of extract obtained from Mangifera indica L. leaves in preclinical in vitro models. Specifically, the profile and content of bioactive compounds, the antimicrobial potential toward food spoilage and pathogenic bacterial species, and the eventually protective effect in inflammation were examined. Our findings revealed that MLE was rich in polyphenols, showing a content exclusively in the subclass of benzophenone/xanthone metabolites, and these phytochemical compounds demonstrated the highest antioxidant capacity and greatest in vitro antibacterial activity toward different bacterial species such as Bacillus cereus, B. subtilis, Pseudomonas fluorescens, Staphylococcus aureus, and St. haemolyticus. Furthermore, our data showed an in vitro anti-inflammatory, antioxidant, and antifibrotic activity.

15.
Int J Mol Sci ; 24(1)2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36613471

ABSTRACT

Uveal melanoma (UM), the most common primary intraocular cancer in adults, is among the tumors with poorer prognosis. Recently, the role of the oncometabolite lactate has become attractive due to its role as hydroxycarboxylic acid receptor 1 (HCAR1) activator, as an epigenetic modulator inducing lysine residues lactylation and, of course, as a glycolysis end-product, bridging the gap between glycolysis and oxidative phosphorylation. The aim of the present study was to dissect in UM cell line (92.1) the role of lactate as either a metabolite or a signaling molecule, using the known modulators of HCAR1 and of lactate transporters. Our results show that lactate (20 mM) resulted in a significant decrease in cell proliferation and migration, acting and switching cell metabolism toward oxidative phosphorylation. These results were coupled with increased euchromatin content and quiescence in UM cells. We further showed, in a clinical setting, that an increase in lactate transporters MCT4 and HCAR1 is associated with a spindle-shape histological type in UM. In conclusion, our results suggest that lactate metabolism may serve as a prognostic marker of UM progression and may be exploited as a potential therapeutic target.


Subject(s)
Melanoma , Uveal Neoplasms , Humans , Lactic Acid/metabolism , Melanoma/metabolism , Signal Transduction , Receptors, G-Protein-Coupled/metabolism , Uveal Neoplasms/pathology , Cell Line, Tumor
16.
J Clin Med ; 10(23)2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34884183

ABSTRACT

Multiple properties of lactoferrin have been reported in the literature so far. Decades of in vitro and in vivo studies have demonstrated the important antimicrobial, anti-inflammatory, anti-oxidant, and immunomodulating properties. It suggests the use of lactoferrin as an effective and safe option for the treatment of several common disorders. Herein, we show the applications of lactoferrin in clinical practice, highlighting its evidence-based capacities for the treatment of heterogeneous disorders, such as allergic, gastrointestinal, and respiratory diseases, and hematologic, oncologic, gynecologic, dermatologic, and dental disorders. Moreover, the widespread use of lactoferrin in neonatology is summarized here. As a result of its antiviral properties, lactoferrin has also been proposed as a valid option for the treatment for COVID-19 patients. Here, the uses of lactoferrin in clinical practice as a new, safe, and evidence-based treatment for many types of disorders are summarized.

17.
Biomolecules ; 11(6)2021 06 21.
Article in English | MEDLINE | ID: mdl-34205698

ABSTRACT

In order to maintain redox homeostasis, non-small-cell lung cancer (NSCLC) increases the activation of many antioxidant systems, including the heme-oxygenase (HO) system. The overexpression of HO-1 has been often associated with chemoresistance and tumor aggressiveness. Our results clearly showed an overexpression of the HO-1 protein in A549 NSCLC cell lines compared to that in non-cancerous cells. Thus, we hypothesized that "off-label" use of tin mesoporphyrin, a well-known HO activity inhibitor clinically used for neonatal hyperbilirubinemia, has potential use as an anti-cancer agent. The pharmacological inhibition of HO activity caused a reduction in cell proliferation and migration of A549. SnMP treatment caused an increase in oxidative stress, as demonstrated by the upregulation of reactive oxygen species (ROS) and the depletion of glutathione (GSH) content. To support these data, Western blot analysis was performed to analyze glucose-6-phosphate dehydrogenase (G6PD), TP53-induced glycolysis and the apoptosis regulator (TIGAR), and the glutamate cysteine ligase catalytic (GCLC) subunit, as they represent the main regulators of the pentose phosphate pathway (PPP) and glutathione synthesis, respectively. NCI-H292, a subtype of the NSCLC cell line, did not respond to SnMP treatment, possibly due to low basal levels of HO-1, suggesting a cellular-dependent antitumorigenic effect. Altogether, our results suggest HO activity inhibition may represent a potential target for selective chemotherapy in lung cancer subtypes.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung , Cell Proliferation/drug effects , Glutathione/metabolism , Heme Oxygenase-1/metabolism , Lung Neoplasms , Metalloporphyrins/pharmacology , A549 Cells , Apoptosis Regulatory Proteins/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Glutamate-Cysteine Ligase/metabolism , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Phosphoric Monoester Hydrolases/metabolism , Tumor Suppressor Protein p53/metabolism
18.
Mech Ageing Dev ; 197: 111516, 2021 07.
Article in English | MEDLINE | ID: mdl-34097937

ABSTRACT

Human behavior is influenced by both genetic and environmental factors. Monoamine oxidase A (MAOA) is among the most investigated genetic determinants of violent behaviors, while the monoamine oxidase B (MAOB) is explored in Parkinson's disease. We collected twenty-four post-mortem brain tissue datasets of 3871 and 1820 non-demented males and females, respectively, who died from causes not attributable to neurodegenerative diseases. The gene expressions of MAOA and MAOB (MAO genes) were analyzed in these subjects, who were further stratified according to age into eleven groups ranging from late Infancy (5-9 months) to centenarians (>100 years). MAO genes were differently expressed in brains during the entire life span. In particular, maximal and minimal expression levels were found in early life and around the teen years. Females tended to have higher MAO gene levels throughout their lives than those found in age-matched males, even when expressions were separately measured in different brain regions. We demonstrated the existence of age- and sex- related variations in the MAO transcript levels in defined brain regions. More in-depth protein studies are needed to confirm our preliminary results obtained only on messenger RNAs in order to establish the role played by MAO genes in human development.


Subject(s)
Aging/metabolism , Brain/enzymology , Gene Expression Regulation, Enzymologic , Monoamine Oxidase/biosynthesis , Sex Characteristics , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged
19.
Int J Mol Sci ; 22(5)2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33671104

ABSTRACT

In recent years, there has been a growth in scientific interest in nutraceuticals, which are those nutrients in foods that have beneficial effects on health. Nutraceuticals can be extracted, used for food supplements, or added to foods. There has long been interest in the antiviral properties of nutraceuticals, which are especially topical in the context of the ongoing COVID-19 pandemic. Therefore, the purpose of this review is to evaluate the main nutraceuticals to which antiviral roles have been attributed (either by direct action on viruses or by modulating the immune system), with a focus on the pediatric population. Furthermore, the possible applications of these substances against SARS-CoV-2 will be considered.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19/prevention & control , Dietary Supplements , Virus Diseases/prevention & control , Child , Humans , Probiotics/therapeutic use , Randomized Controlled Trials as Topic , SARS-CoV-2/drug effects
20.
J Chem Neuroanat ; 113: 101934, 2021 04.
Article in English | MEDLINE | ID: mdl-33582252

ABSTRACT

Recent findings demonstrated that physical exercise has a powerful role in improving cognitive function and delaying age-associated neurological decline. However, to date, there is a lack of information regarding the effect of physical activity (PA) on brain cells architecture. In this paper, we hypothesized that PA could play a role in the transcriptional changes of genes that enrich the main cells of central nervous system (CNS). From NCBI, we selected a microarray dataset composed of the human hippocampi (GSE110298) from 23 cognitively intact clinical cases (NDHSs) (aged 87.4 ±â€¯6.3 years) selected to from the Rush Memory and Aging Project (MAP). The significantly expressed genes, obtained comparing hippocampi from subjects who underwent Low Physical Activity (LPA) vs those who performed High Physical Activity (HPA), were overlapped with the main genes enriching the CNS cells, obtained from the public human brain single-cell RNA-sequencing dataset (GSE67835), in order to determine the respective weighted percentages of significantly expression genes modulation (WPSEG). In NDHSs underwent HPA, the WPSEG was higher for Neurons, Dendritic Development, Synaptic transmission genes and Axon Development. In addition, in NDHSs underwent LPA we observed high expression of genes enriching Oligodendrocytes, Microglia, and Endothelial cells. Furthermore, neurogenesis and the decreasing of the T cell-mediated inflammatory process were the two main molecular mechanisms activated in the brains of NDHSs underwent HPA. From our results, it is possible to conclude that, in elderly subjects, the transcriptional profile of CNS cells changes as a function of the PA conducted during life. Performing PA periodically supports the maintenance of the physiological balance of neuronal cells and, consequently, improves the quality of life of the elderly.


Subject(s)
Aging/metabolism , Exercise/physiology , Hippocampus/metabolism , Neurogenesis/genetics , Neurons/metabolism , Transcriptome , Aged , Aged, 80 and over , Aging/genetics , Databases, Genetic , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...