Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters











Publication year range
1.
Bioelectrochemistry ; 146: 108107, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35390667

ABSTRACT

A powerful, yet low-cost and semi-portable electrochemiluminescence (ECL) biosensing device is described. It is constructed around a Raspberry Pi single-board computer, which serves as the controller and user interface. The Pi is interfaced with an expansion board that controls the potential applied to a disposable screen-printed electrode and facilitates data acquisition from a photomultiplier tube (PMT), which detects the ECL emission from the sensor surface. As proof-of-concept, we demonstrate that this arrangement can quantitate tris(2,2'-bipyridine)ruthenium(II) ([Ru(bpy)3]2+]) with an estimated limit of detection (LOD) of 20 pM, and C-reactive protein with an LOD of 50 fg mL-1. The analytical performance of the Raspberry Pi-based setup is comparable to a conventional ECL configuration (computer, potentiostat and photodetector). The Raspberry Pi-based setup can replace a conventional ECL setup, at a fraction of the cost, without sacrificing sensitivity or versatility. The combination of a single-board computer and a sensitive light detector represents a significant step towards translating ECL instruments into mobile, point-of-care diagnostic platforms.


Subject(s)
Biosensing Techniques , Luminescent Measurements , Electrochemical Techniques , Electrodes , Immunoassay , Limit of Detection
2.
Front Chem ; 8: 628483, 2020.
Article in English | MEDLINE | ID: mdl-33585404

ABSTRACT

We examined a series of commercially available screen-printed electrodes (SPEs) for their suitability for electrochemical and electrogenerated chemiluminescence (ECL) detection systems. Using cyclic voltammetry with both a homogeneous solution-based and a heterogeneous bead-based ECL assay format, the most intense ECL signals were observed from unmodified carbon-based SPEs. Three commercially available varieties were tested, with Zensor outperforming DropSens and Kanichi in terms of sensitivity. The incorporation of nanomaterials in the electrode did not significantly enhance the ECL intensity under the conditions used in this evaluation (such as gold nanoparticles 19%, carbon nanotubes 45%, carbon nanofibers 21%, graphene 48%, and ordered mesoporous carbon 21% compared to the ECL intensity of unmodified Zensor carbon electrode). Platinum and gold SPEs exhibited poor relative ECL intensities (16% and 10%) when compared to carbonaceous materials, due to their high rates of surface oxide formation and inefficient oxidation of tri-n-propylamine (TPrA). However, the ECL signal at platinum electrodes can be increased ∼3-fold with the addition of a surfactant, which enhanced TPrA oxidation due to increasing the hydrophobicity of the electrode surface. Our results also demonstrate that each SPE should only be used once, as we observed a significant change in ECL intensity over repeated CV scans and SPEs cannot be mechanically polished to refresh the electrode surface.

3.
Dalton Trans ; 48(2): 653-663, 2019 Jan 02.
Article in English | MEDLINE | ID: mdl-30542690

ABSTRACT

A series of five heteroleptic Ir(iii) complexes of the general form Ir(dfppy)2(C^C) have been prepared (where dfppy represents 2-(2,4-difluorophenyl)pyridine and C^C represents a bidentate cyclometalated phenyl substituted imidazolylidene ligand). The cyclometalated phenyl ring of the imidazolylidene ligand was either unsubstituted or substituted with electron donating (OMe and Me) or electron withdrawing (Cl and F) groups in the 2 and 4 positions. The synthesised Ir(iii) complexes have been characterised by elemental analysis, NMR spectroscopy, cyclic voltammetry and electronic absorption and emission spectroscopy. The molecular structures for four Ir(iii) complexes were determined by single crystal X-ray diffraction. Each of the Ir(iii) complexes exhibited intense photoluminescence in acetonitrile solution at room temperature with quantum yields (ΦPL) ranging from 58% to 86%. Cyclic voltammetry experiments revealed one oxidation process (formally ascribed to the metal centre), and two ligand-based reductions for each complex. Complexes 1-5 gave moderate to intense annihilation and co-reactant electrochemiluminescence (ECL). Consideration of the electrochemical, spectroscopic and theoretical investigations provide insights into the electrochemiluminescence behaviour.

4.
Eur J Med Chem ; 109: 305-13, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26802546

ABSTRACT

A range of 1,4-substituted 2-pyridyl-N-phenyl triazoles were synthesised and evaluated for their antiproliferative properties against lymph node cancer of the prostate (LNCaP) and bone metastasis of prostate cancer (PC-3) cells. Excellent-to-low IC50 values were determined (5.6-250 µM), and a representative group of 4 ligands were then complexed to iridium(III) giving highly luminescent species. Re-evaluation of these compounds against both cell lines was then undertaken and improved potency (up to 72-fold) was observed, giving IC50 values of 0.36-11 µM for LNCaP and 0.85-5.9 µM for PC-3. Preliminary screens for in vivo toxicity were conducted using a zebrafish model showing a wide range of induced toxicity depending of the compound evaluated. Apoptosis and Caspase-3 levels were also determined and showed no statistical difference between some of the treated specimens and the controls. This study may identify novel therapeutic agents for advanced stage of prostate cancer in humans.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Iridium/chemistry , Iridium/pharmacology , Prostatic Neoplasms/drug therapy , Animals , Antineoplastic Agents/chemical synthesis , Apoptosis/drug effects , Caspase 3/metabolism , Cell Line, Tumor , Click Chemistry , Coordination Complexes/chemical synthesis , Humans , Ligands , Male , Prostate/drug effects , Prostate/metabolism , Prostate/pathology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Triazoles/chemical synthesis , Triazoles/chemistry , Triazoles/pharmacology , Zebrafish
5.
Chem Sci ; 7(8): 5271-5279, 2016 Aug 01.
Article in English | MEDLINE | ID: mdl-30155177

ABSTRACT

Preliminary explorations of the annihilation electrogenerated chemiluminescence (ECL) of mixed metal complexes have revealed opportunities to enhance emission intensities and control the relative intensities from multiple luminophores through the applied potentials. However, the mechanisms of these systems are only poorly understood. Herein, we present a comprehensive characterisation of the annihilation ECL of mixtures of tris(2,2'-bipyridine)ruthenium(ii) hexafluorophosphate ([Ru(bpy)3](PF6)2) and fac-tris(2-phenylpyridine)iridium(iii) ([Ir(ppy)3]). This includes a detailed investigation of the change in emission intensity from each luminophore as a function of both the applied electrochemical potentials and the relative concentrations of the two complexes, and a direct comparison with two mixed (Ru/Ir) ECL systems for which emission from only the ruthenium-complex was previously reported. Concomitant emission from both luminophores was observed in all three systems, but only when: (1) the applied potentials were sufficient to generate the intermediates required to form the electronically excited state of both complexes; and (2) the concentration of the iridium complex (relative to the ruthenium complex) was sufficient to overcome quenching processes. Both enhancement and quenching of the ECL of the ruthenium complex was observed, depending on the experimental conditions. The observations were rationalised through several complementary mechanisms, including resonance energy transfer and various energetically favourable electron-transfer pathways.

6.
Analyst ; 140(21): 7142-5, 2015 Nov 07.
Article in English | MEDLINE | ID: mdl-26347905

ABSTRACT

A series of aliphatic tertiary amines (HEPES, POPSO, EPPS and BIS-TRIS) commonly used to buffer the pH in biological experiments, were examined as alternative, non-toxic co-reactants for the electrogenerated chemiluminescence (ECL) of tris(2,2'-bipyridine)ruthenium(ii) ([Ru(bpy)3](2+)). These were found to be very attractive as "multi-tasking" reagents, serving not only as co-reactants, but also fulfiling the roles of pH buffer and supporting electrolyte within an aqueous environment; thus significantly simplifying the overall ECL analysis. Sub-nanomolar detection limits were obtained for [Ru(bpy)3](2+) in the presence of BIS-TRIS, making this species an valuable option for co-reactant ECL-based bioanalytical applications.


Subject(s)
Electrochemistry/methods , Electrolytes/chemistry , Luminescence , Ruthenium/chemistry , 2,2'-Dipyridyl/chemistry , Amines , Buffers , Chemistry Techniques, Analytical , Electrodes , HEPES/chemistry , Hydrogen-Ion Concentration , Indicators and Reagents , Luminescent Measurements , Models, Chemical , Phosphatidylserines/chemistry , Piperazines/chemistry , Solubility , Sulfonic Acids/chemistry , Tromethamine/analogs & derivatives , Tromethamine/chemistry
7.
Chemistry ; 21(42): 14987-95, 2015 Oct 12.
Article in English | MEDLINE | ID: mdl-26334026

ABSTRACT

Incorporating phenylpyridine- and triazolylpyridine-based ligands decorated with methylsulfonate or tetraethylene glycol (TEG) groups, a series of iridium(III) complexes has been created for green and blue electrogenerated chemiluminescence under analytically useful aqueous conditions, with tri-n-propylamine as a coreactant. The relative electrochemiluminescence (ECL) intensities of the complexes were dependent on the sensitivity of the photodetector over the wavelength range and the pulse time of the applied electrochemical potential. In terms of the integrated area of corrected ECL spectra, with a pulse time of 0.5 s, the intensities of the Ir(III) complexes were between 18 and 102 % that of [Ru(bpy)3 ](2+) (bpy=2,2'-bipyridine). However, when the intensities were measured with a typical bialkali photomultiplier tube, the signal of the most effective blue emitter, [Ir(df-ppy)2 (pt-TEG)](+) (df-ppy=2-(2,4-difluorophenyl)pyridine anion, pt-TEG=1-(2-(2-(2-(2-hydroxyethoxy)ethoxy)ethoxy)ethyl)-4-(2-pyridyl)-1,2,3-triazole), was over 1200 % that of the orange-red emitter [Ru(bpy)3 ](2+) . A combined experimental and theoretical investigation of the electrochemical and spectroscopic properties of the Ir(III) complexes indicated that the greater intensity from [Ir(df-ppy)2 (pt-TEG)](+) relative to those of the other Ir(III) complexes resulted from a combination of many factors, rather than being significantly favored in one area.

8.
Dalton Trans ; 44(18): 8564-76, 2015 May 14.
Article in English | MEDLINE | ID: mdl-25677333

ABSTRACT

Four cationic heteroleptic iridium(III) complexes have been prepared from methyl- or benzyl-substituted chelating imidazolylidene or benzimidazolylidene ligands using a Ag(I) transmetallation protocol. The synthesised iridium(III) complexes were characterised by elemental analysis, (1)H and (13)C NMR spectroscopy and the molecular structures for three complexes were determined by single crystal X-ray diffraction. A combined theoretical and experimental investigation into the spectroscopic and electrochemical properties of the series was performed in order to gain understanding into the factors influencing photoluminescence and electrochemiluminescence efficiency for these complexes, with the results compared with those of similar NHC complexes of iridium and ruthenium. The N^C coordination mode in these complexes is thought to stabilise thermally accessible non-emissive states relative to the case with analogous complexes with C^C coordinated NHC ligands, resulting in low quantum yields. As a result of this and the instability of the oxidised and reduced forms of the complexes, the electrogenerated chemiluminescence intensities for the compounds are also low, despite favourable energetics. These studies provide valuable insights into the factors that must be considered when designing new NHC-based luminescent complexes.

9.
Chempluschem ; 80(3): 456-470, 2015 Mar.
Article in English | MEDLINE | ID: mdl-31973401

ABSTRACT

Electrogenerated chemiluminescence (ECL) is fundamentally dependent on the applied electrode potential, and measuring ECL intensity over a range of different potentials is commonly used to examine the underlying chemical reaction pathways responsible for the emission of light. Several research groups have now demonstrated that the applied potential can be exploited to selectively elicit ECL from: 1) multiple excited states within a single chemical species; 2) multiple emitters sharing a common co-reactant; or 3) distinct ECL systems. This new generation of multiplexed ECL processes has been facilitated by the extensive development of novel electrochemiluminophores and instrumental approaches such as the near-continuous collection of ECL spectra with CCD detectors during voltammetry or chronoamperometry experiments.

10.
Chempluschem ; 80(3)2015 Mar.
Article in English | MEDLINE | ID: mdl-31973416

ABSTRACT

The frontispiece shows a representative graph of a mixed electrogenerated chemiluminescence system, resolved by both the potential applied to initiate the reactions and the distinct spectral distribution of the three emitters. The Review by Paul S. Francis et al. on page 456, outlines recent innovation in the area of potential-resolved ECL, which can be exploited to selectively elicit light from multiple excited states within a single chemical species, multiple emitters sharing a common co-reactant, or distinct ECL systems within the same solution.

11.
Chem Sci ; 6(1): 472-479, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-28694941

ABSTRACT

We demonstrate the mixed annihilation electrogenerated chemiluminescence of tris(2,2'-bipyridine)ruthenium(ii) with various cyclometalated iridium(iii) chelates. Compared to mixed ECL systems comprising organic luminophores, the absence of T-route pathways enables effective predictions of the observed ECL based on simple estimations of the exergonicity of the reactions leading to excited state production. Moreover, the multiple, closely spaced reductions and oxidations of the metal chelates provide the ability to finely tune the energetics and therefore the observed emission colour. Distinct emissions from multiple luminophores in the same solution are observed in numerous systems. The relative intensity of these emissions and the overall emission colour are dependent on the particular oxidized and reduced species selected by the applied electrochemical potentials. Finally, these studies offer insights into the importance of electronic factors in the question of whether the reduced or oxidized partner becomes excited in annihilation ECL.

12.
Analyst ; 139(22): 6028-35, 2014 Nov 21.
Article in English | MEDLINE | ID: mdl-25271898

ABSTRACT

The chemiluminescence from four cyclometalated iridium(III) complexes containing an ancillary bathophenanthroline-disulfonate ligand exhibited a wide range of emission colours (green to red), and in some cases intensities that are far greater than the commonly employed benchmark reagent, [Ru(bpy)3](2+). A similar complex incorporating a sulfonated triazolylpyridine-based ligand enabled the emission to be shifted into the blue region of the spectrum, but the responses with this complex were relatively poor. DFT calculations of electronic structure and emission spectra support the experimental findings.

13.
Chemistry ; 20(43): 14026-31, 2014 Oct 20.
Article in English | MEDLINE | ID: mdl-25204830

ABSTRACT

We demonstrate a new approach to manipulate the selective emission in mixed electrogenerated chemiluminescence (ECL) systems, where subtle changes in co-reactant properties are exploited to control the relative electron-transfer processes of excitation and quenching. Two closely related tertiary-amine co-reactants, tri-n-propylamine and N,N-diisopropylethylamine, generate remarkably different emission profiles: one provides distinct green and red ECL from [Ir(ppy)3] (ppy=2-phenylpyridinato-C2,N) and a [Ru(bpy)3](2+) (bpy=2,2'-bipyridine) derivative at different applied potentials, whereas the other generates both emissions simultaneously across a wide potential range. These phenomena can be rationalized through the relative exergonicities of electron-transfer quenching of the excited states, in conjunction with the change in concentration of the quenchers over the applied potential range.


Subject(s)
2,2'-Dipyridyl/chemistry , Ethylamines/chemistry , Iridium/chemistry , Propylamines/chemistry , Ruthenium/chemistry , Color , Electrochemical Techniques , Luminescence , Luminescent Measurements
14.
Anal Chim Acta ; 848: 1-9, 2014 Oct 27.
Article in English | MEDLINE | ID: mdl-25263111

ABSTRACT

The application of 'soluble' (colloidal) manganese(IV) for chemiluminescence detection is reviewed, focussing on papers published since the last comprehensive review of the subject in 2008. Advances in this reagent system include: the on-line formation of manganese(IV); new insight into the light-producing pathway and selectivity of the reagent; its application to assess total antioxidants in plant derived samples and oxidative stress in biological fluids and tissues; and the replacement of the formaldehyde enhancer with ethanol.

15.
Talanta ; 126: 110-5, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24881540

ABSTRACT

Herein we explore modern fabrication techniques for the development of chemiluminescence detection flow-cells with features not attainable using the traditional coiled tubing approach. This includes the first 3D-printed chemiluminescence flow-cells, and a milled flow-cell designed to split the analyte stream into two separate detection zones within the same polymer chip. The flow-cells are compared to conventional detection systems using flow injection analysis (FIA) and high performance liquid chromatography (HPLC), with the fast chemiluminescence reactions of an acidic potassium permanganate reagent with morphine and a series of adrenergic phenolic amines.


Subject(s)
Amines/analysis , Luminescent Measurements/instrumentation , Luminescent Measurements/methods , Phenol/analysis , Printing, Three-Dimensional , Acids/chemistry , Acrylic Resins/chemistry , Amines/chemistry , Chromatography, High Pressure Liquid , Flow Injection Analysis/methods , Morphine/analysis , Morphine/chemistry , Octopamine/analysis , Octopamine/chemistry , Phenol/chemistry , Potassium Permanganate/chemistry , Reproducibility of Results , Synephrine/analysis , Synephrine/chemistry , Tyramine/analogs & derivatives , Tyramine/analysis , Tyramine/chemistry
16.
Chemistry ; 20(12): 3322-32, 2014 Mar 17.
Article in English | MEDLINE | ID: mdl-24591091

ABSTRACT

Compared to tris(2-phenylpyridine)iridium(III) ([Ir(ppy)3 ]), iridium(III) complexes containing difluorophenylpyridine (df-ppy) and/or an ancillary triazolylpyridine ligand [3-phenyl-1,2,4-triazol-5-ylpyridinato (ptp) or 1-benzyl-1,2,3-triazol-4-ylpyridine (ptb)] exhibit considerable hypsochromic shifts (ca. 25-60 nm), due to the significant stabilising effect of these ligands on the HOMO energy, whilst having relatively little effect on the LUMO. Despite their lower photoluminescence quantum yields compared with [Ir(ppy)3 ] and [Ir(df-ppy)3 ], the iridium(III) complexes containing triazolylpyridine ligands gave greater electrogenerated chemiluminescence (ECL) intensities (using tri-n-propylamine (TPA) as a co-reactant), which can in part be ascribed to the more energetically favourable reactions of the oxidised complex (M(+) ) with both TPA and its neutral radical oxidation product. The calculated iridium(III) complex LUMO energies were shown to be a good predictor of the corresponding M(+) LUMO energies, and both HOMO and LUMO levels are related to ECL efficiency. The theoretical and experimental data together show that the best strategy for the design of efficient new blue-shifted electrochemiluminophores is to aim to stabilise the HOMO, while only moderately stabilising the LUMO, thereby increasing the energy gap but ensuring favourable thermodynamics and kinetics for the ECL reaction. Of the iridium(III) complexes examined, [Ir(df-ppy)2 (ptb)](+) was most attractive as a blue-emitter for ECL detection, featuring a large hypsochromic shift (λmax =454 and 484 nm), superior co-reactant ECL intensity than the archetypal homoleptic green and blue emitters: [Ir(ppy)3 ] and [Ir(df-ppy)3 ] (by over 16-fold and threefold, respectively), and greater solubility in polar solvents.

17.
Anal Chem ; 86(5): 2727-32, 2014 Mar 04.
Article in English | MEDLINE | ID: mdl-24512565

ABSTRACT

Exploiting the distinct excitation and emission properties of concomitant electrochemiluminophores in conjunction with the inherent color selectivity of a conventional digital camera, we create a new strategy for multiplexed electrogenerated chemiluminescence detection, suitable for the development of low-cost, portable clinical diagnostic devices. Red, green and blue emitters can be efficiently resolved over the three-dimensional space of ECL intensity versus applied potential and emission wavelength. As the relative contribution ratio of each emitter to the photographic RGB channels is constant, the RGB ECL intensity versus applied-potential curves could be effectively isolated to a single emitter at each potential.

18.
Talanta ; 116: 1067-72, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24148517

ABSTRACT

We present an exploration of the chemiluminescence from reactions of benzylpiperazines and phenylpiperazines with tris(2,2'-bipyridine)ruthenium(III). The selectivity of the reagent towards these compounds was found to be highly dependent upon the pH of the solution, and the relative emission intensity was strongly influenced by electron donating or withdrawing substituents on the phenyl or benzyl ring. In spite of previous investigations showing poor responses for aromatic-substituted amines (compared to their aliphatic amine counterparts), intense emissions were observed with phenylpiperazines under acidic conditions, particularly those with halogen or trifluoromethyl substituents on the aromatic ring. Buffered alkaline conditions provided much broader selectivity for the detection of both phenylpiperazine and benzylpiperazine compounds, which we have applied to a rapid HPLC procedure for the determination of piperazines of forensic interest in 'party pill' samples.


Subject(s)
2,2'-Dipyridyl/analogs & derivatives , Designer Drugs/isolation & purification , Luminescent Measurements/methods , Organometallic Compounds/chemistry , Piperazines/isolation & purification , 2,2'-Dipyridyl/chemistry , Buffers , Chromatography, High Pressure Liquid , Electron Transport , Hydrogen-Ion Concentration , Sensitivity and Specificity , Solutions , Structure-Activity Relationship , Water
19.
Inorg Chem ; 52(13): 7448-59, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23772555

ABSTRACT

A series of four Ru(II) complexes of the form [Ru(bpy)2(C(^)N)](2+) (where C(^)N is a bidentate pyridine-functionalized imidazolylidene- or benzimidazolylidene-based N-heterocyclic carbene (NHC) ligand and bpy is 2,2'-bipyridine) have been synthesized using a Ag(I) transmetalation protocol from the Ru(II) precursor compound, Ru(bpy)2Cl2. The synthesized azolium salts and Ru(II) complexes were characterized by elemental analysis, (1)H and (13)C NMR spectroscopy, cyclic voltammetry, and electronic absorption and emission spectroscopy. The molecular structures for two benzimidazolium salts and three Ru(II) complexes were determined by single crystal X-ray diffraction. The complexes display photoluminescence within the range 611-629 nm, with the emission wavelength of the benzimidazolylidene containing structures, slightly blue-shifted relative to the imidazolylidene containing complexes. All complexes exhibited a reversible, one-electron oxidation, which is assigned to the Ru(2+/3+) redox couple. When compared to [Ru(bpy)3](2+), complexes of imidazolylidene containing ligands were oxidized at more negative potentials, while those of the benzimidazolylidene containing ligands were oxidized at more positive potentials. All four complexes exhibited moderately intense electrochemiluminescence (ECL) with the obtained ECL spectra closely resembling the photoluminescence spectra. The ability to predictably fine-tune the highest occupied molecular orbital (HOMO) level of the Ru(II) complexes via the flexible synthetic strategy offered by NHCs is valuable for the design of ECL-based multiplexed detection strategies.

20.
Analyst ; 137(12): 2766-9, 2012 Jun 21.
Article in English | MEDLINE | ID: mdl-22552012

ABSTRACT

The reaction of various [Os(L)(2)(L')](2+) complexes (where L and L' are phenanthroline, diphosphine or diarsine ligands) and organic reducing agents after chemical or electrochemical oxidation of the reactants produces an emission of light corresponding to MLCT transitions. In certain instances, the emission was greater than that of [Ru(bipy)(3)](2+), but the relative signals were dependent on many factors, including reagent concentration, mode of oxidation, reducing agent and the sensitivity of the photodetector over the wavelength range.

SELECTION OF CITATIONS
SEARCH DETAIL