Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters










Publication year range
1.
G3 (Bethesda) ; 13(11)2023 11 01.
Article in English | MEDLINE | ID: mdl-37766472

ABSTRACT

Meiotic drive biases the transmission of alleles in heterozygous individuals, such that Mendel's law of equal segregation is violated. Most examples of meiotic drive have been discovered over the past century based on causing sex ratio distortion or the biased transmission of easily scoreable genetic markers that were linked to drive alleles. More recently, several approaches have been developed that attempt to identify distortions of Mendelian segregation genome wide. Here, we test a candidate female meiotic drive locus in Drosophila melanogaster, identified previously as causing a ∼54:46 distortion ratio using sequencing of large pools of backcross progeny. We inserted fluorescent visible markers near the candidate locus and scored transmission in thousands of individual progeny. We observed a small but significant deviation from the Mendelian expectation; however, it was in the opposite direction to that predicted based on the original experiments. We discuss several possible causes of the discrepancy between the 2 approaches, noting that subtle viability effects are particularly challenging to disentangle from potential small-effect meiotic drive loci. We conclude that pool sequencing approaches remain a powerful method to identify candidate meiotic drive loci but that genotyping of individual progeny at early developmental stages may be required for robust confirmation.


Subject(s)
Drosophila melanogaster , Meiosis , Humans , Animals , Female , Drosophila melanogaster/genetics , Heterozygote , Meiosis/genetics
2.
G3 (Bethesda) ; 12(9)2022 08 25.
Article in English | MEDLINE | ID: mdl-35876798

ABSTRACT

Crosses between Drosophila simulans females and Drosophila melanogaster males produce viable F1 sons and poorly viable F1 daughters. Unlike most hybrid incompatibilities, this hybrid incompatibility violates Haldane's rule, the observation that incompatibilities preferentially affect the heterogametic sex. Furthermore, it has a different genetic basis than hybrid lethality in the reciprocal cross, with the causal allele in Drosophila melanogaster being a large species-specific block of complex satellite DNA on its X chromosome known as the 359-bp satellite, rather than a protein-coding locus. The causal allele(s) in Drosophila simulans are unknown but likely involve maternally expressed genes or factors since the F1 females die during early embryogenesis. The maternal haploid (mh) gene is an intriguing candidate because it is expressed maternally and its protein product localizes to the 359-bp repeat. We found that this gene has diverged extensively between Drosophila melanogaster and Drosophila simulans. This observation led to the hypothesis that Drosophila melanogaster mh may have coevolved with the 359-bp repeat and that hybrid incompatibility thus results from the absence of a coevolved mh allele in Drosophila simulans. We tested for the functional divergence of mh by creating matched transformants of Drosophila melanogaster and Drosophila simulans orthologs in both Drosophila melanogaster and Drosophila simulans strains. Surprisingly, we find that Drosophila simulans mh fully complements the female sterile phenotype of Drosophila melanogaster mh mutations. Contrary to our hypothesis, we find no evidence that adding a Drosophila melanogaster mh gene to Drosophila simulans increases hybrid viability.


Subject(s)
Drosophila melanogaster , Drosophila , Animals , Drosophila/genetics , Drosophila melanogaster/genetics , Drosophila simulans/genetics , Female , Genes, Lethal , Haploidy , Hybridization, Genetic , Male
3.
J Evol Biol ; 35(5): 693-707, 2022 05.
Article in English | MEDLINE | ID: mdl-35411988

ABSTRACT

Speciation is driven by traits that can act to prevent mating between nascent lineages, including male courtship and female preference for male traits. Mating barriers involving these traits evolve quickly because there is strong selection on males and females to maximize reproductive success, and the tight co-evolution of mating interactions can lead to rapid diversification of sexual behaviour. Populations of Drosophila melanogaster show strong asymmetrical reproductive isolation that is correlated with geographic origin. Using strains that capture natural variation in mating traits, we ask two key questions: which specific male traits are females selecting, and are these traits under divergent sexual selection? These questions have proven extremely challenging to answer, because even in closely related lineages males often differ in multiple traits related to mating behaviour. We address these questions by estimating selection gradients for male courtship and cuticular hydrocarbons for two different female genotypes. We identify specific behaviours and particular cuticular hydrocarbons that are under divergent sexual selection and could potentially contribute to premating reproductive isolation. Additionally, we report that a subset of these traits are plastic; males adjust these traits based on the identity of the female genotype they interact with. These results suggest that even when male courtship is not fixed between lineages, ongoing selection can act on traits that are important for reproductive isolation.


Subject(s)
Drosophila melanogaster , Mating Preference, Animal , Animals , Courtship , Drosophila melanogaster/genetics , Female , Hydrocarbons , Male , Reproductive Isolation , Sexual Behavior, Animal
4.
PLoS Genet ; 18(3): e1010110, 2022 03.
Article in English | MEDLINE | ID: mdl-35324887

ABSTRACT

Germline stem cells (GSCs) are the progenitor cells of the germline for the lifetime of an animal. In Drosophila, these cells reside in a cellular niche that is required for both their maintenance (self-renewal) and differentiation (asymmetric division resulting in a daughter cell that differs from the GSC). The stem cell-daughter cell transition is tightly regulated by a number of processes, including an array of proteins required for genome stability. The germline stem-cell maintenance factor Stonewall (Stwl) associates with heterochromatin, but its molecular function is poorly understood. We performed RNA-Seq on stwl mutant ovaries and found significant derepression of many transposon families but not heterochromatic genes. We also discovered inappropriate expression of multiple classes of genes. Most prominent are testis-enriched genes, including the male germline sex-determination switch Phf7, the differentiation factor bgcn, and a large testis-specific gene cluster on chromosome 2, all of which are upregulated or ectopically expressed in stwl mutant ovaries. Surprisingly, we also found that RNAi knockdown of stwl in somatic S2 cells results in ectopic expression of these testis genes. Using parallel ChIP-Seq and RNA-Seq experiments in S2 cells, we discovered that Stwl localizes upstream of transcription start sites and at heterochromatic sequences including repetitive sequences associated with telomeres. Stwl is also enriched at bgcn, suggesting that it directly regulates this essential differentiation factor. Finally, we identify Stwl binding motifs that are shared with known insulator binding proteins. We propose that Stwl affects gene regulation, including repression of male transcripts in the female germline, by binding insulators and establishing chromatin boundaries.


Subject(s)
DNA-Binding Proteins , Drosophila Proteins , Drosophila melanogaster , Transcription Factors , Animals , Cell Differentiation , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Female , Germ Cells/metabolism , Homeodomain Proteins/genetics , Insulator Elements/genetics , Male , Ovary/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
5.
Mol Biol Evol ; 39(1)2022 01 07.
Article in English | MEDLINE | ID: mdl-34921315

ABSTRACT

Transposable elements (TEs) are self-replicating "genetic parasites" ubiquitous to eukaryotic genomes. In addition to conflict between TEs and their host genomes, TEs of the same family are in competition with each other. They compete for the same genomic niches while experiencing the same regime of copy-number selection. This suggests that competition among TEs may favor the emergence of new variants that can outcompete their ancestral forms. To investigate the sequence evolution of TEs, we developed a method to infer clades: collections of TEs that share SNP variants and represent distinct TE family lineages. We applied this method to a panel of 85 Drosophila melanogaster genomes and found that the genetic variation of several TE families shows significant population structure that arises from the population-specific expansions of single clades. We used population genetic theory to classify these clades into younger versus older clades and found that younger clades are associated with a greater abundance of sense and antisense piRNAs per copy than older ones. Further, we find that the abundance of younger, but not older clades, is positively correlated with antisense piRNA production, suggesting a general pattern where hosts preferentially produce antisense piRNAs from recently active TE variants. Together these findings suggest a pattern whereby new TE variants arise by mutation and then increase in copy number, followed by the host producing antisense piRNAs that may be used to silence these emerging variants.


Subject(s)
DNA Transposable Elements , Drosophila melanogaster , RNA, Small Interfering , Animals , Drosophila melanogaster/genetics , Evolution, Molecular , RNA, Small Interfering/genetics
6.
Genetics ; 217(2)2021 02 09.
Article in English | MEDLINE | ID: mdl-33724410

ABSTRACT

Drosophila telomeres have been maintained by three families of active transposable elements (TEs), HeT-A, TAHRE, and TART, collectively referred to as HTTs, for tens of millions of years, which contrasts with an unusually high degree of HTT interspecific variation. While the impacts of conflict and domestication are often invoked to explain HTT variation, the telomeres are unstable structures such that neutral mutational processes and evolutionary tradeoffs may also drive HTT evolution. We leveraged population genomic data to analyze nearly 10,000 HTT insertions in 85 Drosophila melanogaster genomes and compared their variation to other more typical TE families. We observe that occasional large-scale copy number expansions of both HTTs and other TE families occur, highlighting that the HTTs are, like their feral cousins, typically repressed but primed to take over given the opportunity. However, large expansions of HTTs are not caused by the runaway activity of any particular HTT subfamilies or even associated with telomere-specific TE activity, as might be expected if HTTs are in strong genetic conflict with their hosts. Rather than conflict, we instead suggest that distinctive aspects of HTT copy number variation and sequence diversity largely reflect telomere instability, with HTT insertions being lost at much higher rates than other TEs elsewhere in the genome. We extend previous observations that telomere deletions occur at a high rate, and surprisingly discover that more than one-third do not appear to have been healed with an HTT insertion. We also report that some HTT families may be preferentially activated by the erosion of whole telomeres, implying the existence of HTT-specific host control mechanisms. We further suggest that the persistent telomere localization of HTTs may reflect a highly successful evolutionary strategy that trades away a stable insertion site in order to have reduced impact on the host genome. We propose that HTT evolution is driven by multiple processes, with niche specialization and telomere instability being previously underappreciated and likely predominant.


Subject(s)
DNA Transposable Elements , Evolution, Molecular , Telomere/genetics , Animals , Drosophila melanogaster , Genomic Instability , Polymorphism, Genetic , Recombination, Genetic
7.
Trends Genet ; 36(7): 474-489, 2020 07.
Article in English | MEDLINE | ID: mdl-32473745

ABSTRACT

Transposable elements (TEs) are mobile genetic parasites that can exponentially increase their genomic abundance through self-propagation. Classic theoretical papers highlighted the importance of two potentially escalating forces that oppose TE spread: regulated transposition and purifying selection. Here, we review new insights into mechanisms of TE regulation and purifying selection, which reveal the remarkable foresight of these theoretical models. We further highlight emergent connections between transcriptional control enacted by small RNAs and the contribution of TE insertions to structural mutation and host-gene regulation. Finally, we call for increased comparative analysis of TE dynamics and fitness effects, as well as host control mechanisms, to reveal how interconnected forces shape the differential prevalence and distribution of TEs across the tree of life.


Subject(s)
DNA Transposable Elements/genetics , Evolution, Molecular , Models, Genetic , Selection, Genetic , Animals , Humans , RNA Interference
8.
PLoS Genet ; 16(6): e1008861, 2020 06.
Article in English | MEDLINE | ID: mdl-32525870

ABSTRACT

In metazoan germlines, the piRNA pathway acts as a genomic immune system, employing small RNA-mediated silencing to defend host DNA from the harmful effects of transposable elements (TEs). Expression of genomic TEs is proposed to initiate self regulation by increasing the production of repressive piRNAs, thereby "adapting" piRNA-mediated control to the most active TE families. Surprisingly, however, piRNA pathway proteins, which execute piRNA biogenesis and enforce silencing of targeted sequences, evolve rapidly and adaptively in animals. If TE silencing is ensured through piRNA biogenesis, what necessitates changes in piRNA pathway proteins? Here we used interspecific complementation to test for functional differences between Drosophila melanogaster and D. simulans alleles of three adaptively evolving piRNA pathway proteins: Armitage, Aubergine and Spindle-E. In contrast to piRNA-mediated transcriptional regulators examined in previous studies, these three proteins have cytoplasmic functions in piRNA maturation and post-transcriptional silencing. Across all three proteins we observed interspecific divergence in the regulation of only a handful of TE families, which were more robustly silenced by the heterospecific piRNA pathway protein. This unexpected result suggests that unlike transcriptional regulators, positive selection has not acted on cytoplasmic piRNA effector proteins to enhance their function in TE repression. Rather, TEs may evolve to "escape" silencing by host proteins. We further discovered that D. simulans alleles of aub and armi exhibit enhanced off-target effects on host transcripts in a D. melanogaster background, as well as modest reductions in the efficiency of piRNA biogenesis, suggesting that promiscuous binding of D. simulans Aub and Armi proteins to host transcripts reduces their participation in piRNA production. Avoidance of genomic auto-immunity may therefore be a critical target of selection. Our observations suggest that piRNA effector proteins are subject to an evolutionary trade-off between defending the host genome from the harmful effect of TEs while also minimizing collateral damage to host genes.


Subject(s)
Autoimmunity/genetics , DNA Transposable Elements/immunology , Drosophila simulans/genetics , Evolution, Molecular , Genome, Insect/immunology , RNA, Small Interfering/biosynthesis , Alleles , Animals , Animals, Genetically Modified , Cytoplasm/genetics , Cytoplasm/metabolism , DNA Transposable Elements/genetics , Drosophila Proteins/genetics , Drosophila Proteins/immunology , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/immunology , Drosophila melanogaster/metabolism , Drosophila simulans/metabolism , Female , Gene Expression Regulation/immunology , Genome, Insect/genetics , Male , Mutation , RNA Interference/immunology
9.
Genes (Basel) ; 10(11)2019 11 06.
Article in English | MEDLINE | ID: mdl-31698818

ABSTRACT

Repetitive DNAs are ubiquitous in eukaryotic genomes and, in many species, comprise the bulk of the genome. Repeats include transposable elements that can self-mobilize and disperse around the genome and tandemly-repeated satellite DNAs that increase in copy number due to replication slippage and unequal crossing over. Despite their abundance, repetitive DNAs are often ignored in genomic studies due to technical challenges in identifying, assembling, and quantifying them. New technologies and methods are now allowing unprecedented power to analyze repetitive DNAs across diverse taxa. Repetitive DNAs are of particular interest because they can represent distinct modes of genome evolution. Some repetitive DNAs form essential genome structures, such as telomeres and centromeres, that are required for proper chromosome maintenance and segregation, while others form piRNA clusters that regulate transposable elements; thus, these elements are expected to evolve under purifying selection. In contrast, other repeats evolve selfishly and cause genetic conflicts with their host species that drive adaptive evolution of host defense systems. However, the majority of repeats likely accumulate in eukaryotes in the absence of selection due to mechanisms of transposition and unequal crossing over. However, even these "neutral" repeats may indirectly influence genome evolution as they reach high abundance. In this Special Issue, the contributing authors explore these questions from a range of perspectives.


Subject(s)
Repetitive Sequences, Nucleic Acid/genetics , Repetitive Sequences, Nucleic Acid/physiology , Animals , Centromere , DNA Transposable Elements , DNA, Satellite , Evolution, Molecular , Genome , Genomics , Heterochromatin , Humans , Telomere
10.
Genome Biol Evol ; 10(7): 1673-1686, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29931069

ABSTRACT

The mutational patterns of large tandem arrays of short sequence repeats remain largely unknown, despite observations of their high levels of variation in sequence and genomic abundance within and between species. Many factors can influence the dynamics of tandem repeat evolution; however, their evolution has only been examined over a limited phylogenetic sample of taxa. Here, we use publicly available whole-genome sequencing data of 85 haploid mutation accumulation lines derived from six geographically diverse Chlamydomonas reinhardtii isolates to investigate genome-wide mutation rates and patterns in tandem repeats in this species. We find that tandem repeat composition differs among ancestral strains, both in genome-wide abundance and presence/absence of individual repeats. Estimated mutation rates (repeat copy number expansion and contraction) were high, averaging 4.3×10-4 per generation per single unit copy. Although orders of magnitude higher than other types of mutation previously reported in C. reinhardtii, these tandem repeat mutation rates were one order of magnitude lower than what has recently been found in Daphnia pulex, even after correcting for lower overall genome-wide satellite abundance in C. reinhardtii. Most high-abundance repeats were related to others by a single mutational step. Correlations of repeat copy number changes within genomes revealed clusters of closely related repeats that were strongly correlated positively or negatively, and similar patterns of correlation arose independently in two different mutation accumulation experiments. Together, these results paint a dynamic picture of tandem repeat evolution in this unicellular alga.


Subject(s)
Chlamydomonas reinhardtii/genetics , DNA, Plant/genetics , Mutation Rate , Mutation , Tandem Repeat Sequences , Base Sequence , Genome, Chloroplast , Genome, Plant , Haploidy , Mutation Accumulation
11.
Dev Cell ; 44(5): 539-541, 2018 03 12.
Article in English | MEDLINE | ID: mdl-29533769

ABSTRACT

Genomic divergence can cause reproductive isolation between species. The molecular mechanisms underlying reproductive isolation can thus reveal which genomic features evolve rapidly and become unstable or incompatible in hybrids. In a recent paper in Nature, Gibeaux et al. (2018) report paternal genome instability and metabolic imbalance in hybrids between frog species.


Subject(s)
Genome , Reproductive Isolation , Genomics , Hybridization, Genetic , Mitochondria
12.
Genome Res ; 28(5): 714-725, 2018 05.
Article in English | MEDLINE | ID: mdl-29588362

ABSTRACT

Eukaryotic genomes are replete with repeated sequences in the form of transposable elements (TEs) dispersed across the genome or as satellite arrays, large stretches of tandemly repeated sequences. Many satellites clearly originated as TEs, but it is unclear how mobile genetic parasites can transform into megabase-sized tandem arrays. Comprehensive population genomic sampling is needed to determine the frequency and generative mechanisms of tandem TEs, at all stages from their initial formation to their subsequent expansion and maintenance as satellites. The best available population resources, short-read DNA sequences, are often considered to be of limited utility for analyzing repetitive DNA due to the challenge of mapping individual repeats to unique genomic locations. Here we develop a new pipeline called ConTExt that demonstrates that paired-end Illumina data can be successfully leveraged to identify a wide range of structural variation within repetitive sequence, including tandem elements. By analyzing 85 genomes from five populations of Drosophila melanogaster, we discover that TEs commonly form tandem dimers. Our results further suggest that insertion site preference is the major mechanism by which dimers arise and that, consequently, dimers form rapidly during periods of active transposition. This abundance of TE dimers has the potential to provide source material for future expansion into satellite arrays, and we discover one such copy number expansion of the DNA transposon hobo to approximately 16 tandem copies in a single line. The very process that defines TEs-transposition-thus regularly generates sequences from which new satellites can arise.


Subject(s)
DNA Transposable Elements/genetics , DNA, Satellite/genetics , Drosophila melanogaster/genetics , Evolution, Molecular , Mutagenesis, Insertional , Animals , Binding Sites/genetics , Genome, Insect/genetics , Genomics/methods , Retroelements/genetics
13.
Curr Opin Genet Dev ; 49: 70-78, 2018 04.
Article in English | MEDLINE | ID: mdl-29579574

ABSTRACT

A substantial portion of the genomes of most multicellular eukaryotes consists of large arrays of tandemly repeated sequence, collectively called satellite DNA. The processes generating and maintaining different satellite DNA abundances across lineages are important to understand as satellites have been linked to chromosome mis-segregation, disease phenotypes, and reproductive isolation between species. While much theory has been developed to describe satellite evolution, empirical tests of these models have fallen short because of the challenges in assessing satellite repeat regions of the genome. Advances in computational tools and sequencing technologies now enable identification and quantification of satellite sequences genome-wide. Here, we describe some of these tools and how their applications are furthering our knowledge of satellite evolution and function.


Subject(s)
Base Sequence/genetics , DNA, Satellite/genetics , Eukaryota/genetics , Evolution, Molecular , Animals , Chromosome Segregation/genetics , Genome/genetics , Reproductive Isolation
14.
Mol Biol Evol ; 35(4): 925-941, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29361128

ABSTRACT

Simple satellites are tandemly repeating short DNA motifs that can span megabases in eukaryotic genomes. Because they can cause genomic instability through nonallelic homologous exchange, they are primarily found in the repressive heterochromatin near centromeres and telomeres where recombination is minimal, and on the Y chromosome, where they accumulate as the chromosome degenerates. Interestingly, the types and abundances of simple satellites often vary dramatically between closely related species, suggesting that they turn over rapidly. However, limited sampling has prevented detailed understanding of their evolutionary dynamics. Here, we characterize simple satellites from whole-genome sequences generated from males and females of nine Drosophila species, spanning 40 Ma of evolution. We show that PCR-free library preparation and postsequencing GC-correction better capture satellite quantities than conventional methods. We find that over half of the 207 simple satellites identified are species-specific, consistent with previous descriptions of their rapid evolution. Based on a maximum parsimony framework, we determined that most interspecific differences are due to lineage-specific gains. Simple satellites gained within a species are typically a single mutation away from abundant existing satellites, suggesting that they likely emerge from existing satellites, especially in the genomes of satellite-rich species. Interestingly, unlike most of the other lineages which experience various degrees of gains, the lineage leading up to the satellite-poor D. pseudoobscura and D. persimilis appears to be recalcitrant to gains, providing a counterpoint to the notion that simple satellites are universally rapidly evolving.


Subject(s)
Biological Evolution , DNA, Satellite/genetics , Drosophila/genetics , Animals , Female , Male , Y Chromosome
15.
Genetics ; 207(3): 825-842, 2017 11.
Article in English | MEDLINE | ID: mdl-29097397

ABSTRACT

The question of how new species evolve has been examined at every level, from macroevolutionary patterns of diversification to molecular population genetic analyses of specific genomic regions between species pairs. Drosophila has been at the center of many of these research efforts. Though our understanding of the speciation process has grown considerably over the past few decades, very few genes have been identified that contribute to barriers to reproduction. The development of advanced molecular genetic and genomic methods provides promising avenues for the rapid discovery of more genes that contribute to speciation, particularly those involving prezygotic isolation. The continued expansion of tools and resources, especially for species other than Drosophila melanogaster, will be most effective when coupled with comparative approaches that reveal the genetic basis of reproductive isolation across a range of divergence times. Future research programs in Drosophila have high potential to answer long-standing questions in speciation. These include identifying the selective forces that contribute to divergence between populations and the genetic basis of traits that cause reproductive isolation. The latter can be expanded upon to understand how the genetic basis of reproductive isolation changes over time and whether certain pathways and genes are more commonly involved.


Subject(s)
Drosophila/genetics , Genetic Speciation , Animals , Genetics, Population/methods , Reproductive Isolation
16.
Genetics ; 207(4): 1457-1472, 2017 12.
Article in English | MEDLINE | ID: mdl-29046402

ABSTRACT

Crosses between Drosophila melanogaster females and Drosophila simulans males produce hybrid sons that die at the larval stage. This hybrid lethality is suppressed by loss-of-function mutations in the D. melanogaster Hybrid male rescue (Hmr) or in the D. simulans Lethal hybrid rescue (Lhr) genes. Previous studies have shown that Hmr and Lhr interact with heterochromatin proteins and suppress expression of transposable elements within D. melanogaster It also has been proposed that Hmr and Lhr function at the centromere. We examined mitotic divisions in larval brains from Hmr and Lhr single mutants and Hmr; Lhr double mutants in D. melanogaster In none of the mutants did we observe defects in metaphase chromosome alignment or hyperploid cells, which are hallmarks of centromere or kinetochore dysfunction. In addition, we found that Hmr-HA and Lhr-HA do not colocalize with centromeres either during interphase or mitotic division. However, all mutants displayed anaphase bridges and chromosome aberrations resulting from the breakage of these bridges, predominantly at the euchromatin-heterochromatin junction. The few dividing cells present in hybrid males showed fuzzy and irregularly condensed chromosomes with unresolved sister chromatids. Despite this defect in condensation, chromosomes in hybrids managed to align on the metaphase plate and undergo anaphase. We conclude that there is no evidence for a centromeric function of Hmr and Lhr within D. melanogaster nor for a centromere defect causing hybrid lethality. Instead, we find that Hmr and Lhr are required in D. melanogaster for detachment of sister chromatids during anaphase.


Subject(s)
Anaphase/genetics , Chromatids/genetics , Drosophila Proteins/genetics , Animals , Centromere/genetics , DNA Transposable Elements , Drosophila melanogaster/genetics , Female , Genes, Lethal/genetics , Heterochromatin/genetics , Hybridization, Genetic , Larva , Male , Sister Chromatid Exchange/genetics , X Chromosome/genetics
17.
Curr Opin Genet Dev ; 47: 17-23, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28830007

ABSTRACT

Genome stability ensures individual fitness and reliable transmission of genetic information. Hybridization between diverging lineages can trigger genome instability, highlighting its potential role in post-zygotic reproductive isolation. We argue that genome instability is not merely one of several types of hybrid incompatibility, but rather that genome stability is one of the very first and most fundamental traits that can break down when two diverged genomes are combined. Future work will reveal how frequent and predictable genome instability is in hybrids, how it affects hybrid fitness, and whether it is a direct cause or consequence of speciation.


Subject(s)
Genetic Speciation , Genomic Instability/genetics , Hybridization, Genetic , Reproduction/genetics , Animals , Reproductive Isolation
18.
Genetics ; 206(1): 451-465, 2017 05.
Article in English | MEDLINE | ID: mdl-28258181

ABSTRACT

Meiotic drive occurs when a selfish element increases its transmission frequency above the Mendelian ratio by hijacking the asymmetric divisions of female meiosis. Meiotic drive causes genomic conflict and potentially has a major impact on genome evolution, but only a few drive loci of large effect have been described. New methods to reliably detect meiotic drive are therefore needed, particularly for discovering moderate-strength drivers that are likely to be more prevalent in natural populations than strong drivers. Here, we report an efficient method that uses sequencing of large pools of backcross (BC1) progeny to test for deviations from Mendelian segregation genome-wide with single-nucleotide polymorphisms (SNPs) that distinguish the parental strains. We show that meiotic drive can be detected by a characteristic pattern of decay in distortion of SNP frequencies, caused by recombination unlinking the driver from distal loci. We further show that control crosses allow allele-frequency distortion caused by meiotic drive to be distinguished from distortion resulting from developmental effects. We used this approach to test whether chromosomes with extreme telomere-length differences segregate at Mendelian ratios, as telomeric regions are a potential hotspot for meiotic drive due to their roles in meiotic segregation and multiple observations of high rates of telomere sequence evolution. Using four different pairings of long and short telomere strains, we find no evidence that extreme telomere-length variation causes meiotic drive in Drosophila However, we identify one candidate meiotic driver in a centromere-linked region that shows an ∼8% increase in transmission frequency, corresponding to a ∼54:46 segregation ratio. Our results show that candidate meiotic drivers of moderate strength can be readily detected and localized in pools of BC1 progeny.


Subject(s)
Evolution, Molecular , Genome, Insect/genetics , Meiosis/genetics , Models, Genetic , Animals , Centromere/genetics , Drosophila melanogaster/genetics , Gene Frequency , Polymorphism, Single Nucleotide , Repetitive Sequences, Nucleic Acid/genetics , Telomere/genetics
19.
PLoS Genet ; 11(8): e1005453, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26291077

ABSTRACT

Many reproductive proteins from diverse taxa evolve rapidly and adaptively. These proteins are typically involved in late stages of reproduction such as sperm development and fertilization, and are more often functional in males than females. Surprisingly, many germline stem cell (GSC) regulatory genes, which are essential for the earliest stages of reproduction, also evolve adaptively in Drosophila. One example is the bag of marbles (bam) gene, which is required for GSC differentiation and germline cyst development in females and for regulating mitotic divisions and entry to spermatocyte differentiation in males. Here we show that the extensive divergence of bam between Drosophila melanogaster and D. simulans affects bam function in females but has no apparent effect in males. We further find that infection with Wolbachia pipientis, an endosymbiotic bacterium that can affect host reproduction through various mechanisms, partially suppresses female sterility caused by bam mutations in D. melanogaster and interacts differentially with bam orthologs from D. melanogaster and D. simulans. We propose that the adaptive evolution of bam has been driven at least in part by the long-term interactions between Drosophila species and Wolbachia. More generally, we suggest that microbial infections of the germline may explain the unexpected pattern of evolution of several GSC regulatory genes.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/metabolism , Wolbachia/physiology , Animals , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/microbiology , Evolution, Molecular , Female , Gene Expression , Genetic Complementation Test , Host-Pathogen Interactions , Infertility/genetics , Male , Ovary/metabolism , Ovary/pathology , Sex Characteristics
20.
PLoS Biol ; 13(4): e1002077, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25881199

ABSTRACT

A new study reveals multiple dramatic changes in sex chromosome structure and identity in flies; such transitions are accompanied by a series of genomic events that affect chromosome biology, gene regulation, and sex determination. See the accompanying Research Article.


Subject(s)
Diptera/genetics , Sex Chromosomes , Animals , Female , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...