Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Brain Commun ; 6(3): fcae137, 2024.
Article in English | MEDLINE | ID: mdl-38741663

ABSTRACT

Stroke is one of the leading causes of disability worldwide. There are many different rehabilitation approaches aimed at improving clinical outcomes for stroke survivors. One of the latest therapeutic techniques is the non-invasive brain stimulation. Among non-invasive brain stimulation, transcranial direct current stimulation has shown promising results in enhancing motor and cognitive recovery both in animal models of stroke and stroke survivors. In this framework, one of the most innovative methods is the bihemispheric transcranial direct current stimulation that simultaneously increases excitability in one hemisphere and decreases excitability in the contralateral one. As bihemispheric transcranial direct current stimulation can create a more balanced modulation of brain activity, this approach may be particularly useful in counteracting imbalanced brain activity, such as in stroke. Given these premises, the aim of the current study has been to explore the recovery after stroke in mice that underwent a bihemispheric transcranial direct current stimulation treatment, by recording their electric brain activity with local field potential and by measuring behavioural outcomes of Grip Strength test. An innovative parameter that explores the complexity of signals, namely the Entropy, recently adopted to describe brain activity in physiopathological states, was evaluated to analyse local field potential data. Results showed that stroke mice had higher values of Entropy compared to healthy mice, indicating an increase in brain complexity and signal disorder due to the stroke. Additionally, the bihemispheric transcranial direct current stimulation reduced Entropy in both healthy and stroke mice compared to sham stimulated mice, with a greater effect in stroke mice. Moreover, correlation analysis showed a negative correlation between Entropy and Grip Strength values, indicating that higher Entropy values resulted in lower Grip Strength engagement. Concluding, the current evidence suggests that the Entropy index of brain complexity characterizes stroke pathology and recovery. Together with this, bihemispheric transcranial direct current stimulation can modulate brain rhythms in animal models of stroke, providing potentially new avenues for rehabilitation in humans.

2.
Int J Mol Sci ; 25(1)2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38203763

ABSTRACT

Vitamin B12 (VitB12) is a micronutrient and acts as a cofactor for fundamental biochemical reactions: the synthesis of succinyl-CoA from methylmalonyl-CoA and biotin, and the synthesis of methionine from folic acid and homocysteine. VitB12 deficiency can determine a wide range of diseases, including nervous system impairments. Although clinical evidence shows a direct role of VitB12 in neuronal homeostasis, the molecular mechanisms are yet to be characterized in depth. Earlier investigations focused on exploring the biochemical shifts resulting from a deficiency in the function of VitB12 as a coenzyme, while more recent studies propose a broader mechanism, encompassing changes at the molecular/cellular levels. Here, we explore existing study models employed to investigate the role of VitB12 in the nervous system, including the challenges inherent in replicating deficiency/supplementation in experimental settings. Moreover, we discuss the potential biochemical alterations and ensuing mechanisms that might be modified at the molecular/cellular level (such as epigenetic modifications or changes in lysosomal activity). We also address the role of VitB12 deficiency in initiating processes that contribute to nervous system deterioration, including ROS accumulation, inflammation, and demyelination. Consequently, a complex biological landscape emerges, requiring further investigative efforts to grasp the intricacies involved and identify potential therapeutic targets.


Subject(s)
Central Nervous System Depressants , Vitamin B 12 Deficiency , Humans , Vitamin B 12 , Models, Biological , Biotin , Nervous System
3.
Cells ; 11(17)2022 08 27.
Article in English | MEDLINE | ID: mdl-36078069

ABSTRACT

Early-life metabolic stress has been demonstrated to affect brain development, persistently influence brain plasticity and to exert multigenerational effects on cognitive functions. However, the impact of an ancestor's diet on the adult neurogenesis of their descendants has not yet been investigated. Here, we studied the effects of maternal high fat diet (HFD) on hippocampal adult neurogenesis and the proliferation of neural stem and progenitor cells (NSPCs) derived from the hippocampus of both the second and the third generations of progeny (F2HFD and F3HFD). Maternal HFD caused a multigenerational depletion of neurogenic niche in F2HFD and F3HFD mice. Moreover, NSPCs derived from HFD descendants showed altered expression of genes regulating stem cell proliferation and neurodifferentiation (i.e., Hes1, NeuroD1, Bdnf). Finally, ancestor HFD-related hyper-activation of both STAT3 and STAT5 induced enhancement of their binding on the regulatory sequences of Gfap gene and an epigenetic switch from permissive to repressive chromatin on the promoter of the NeuroD1 gene. Collectively, our data indicate that maternal HFD multigenerationally affects hippocampal adult neurogenesis via an epigenetic derangement of pro-neurogenic gene expression in NSPCs.


Subject(s)
Diet, High-Fat , Hippocampus , Animals , Cell Proliferation , Diet, High-Fat/adverse effects , Epigenesis, Genetic , Hippocampus/metabolism , Mice , Mice, Inbred C57BL
4.
Front Cell Neurosci ; 16: 945777, 2022.
Article in English | MEDLINE | ID: mdl-35936497

ABSTRACT

Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique (NIBS) that has been proven to promote beneficial effects in a range of neurological and psychiatric disorders. Unfortunately, although has been widely investigated, the mechanism comprehension around tDCS effects presents still some gaps. Therefore, scientists are still trying to uncover the cellular and molecular mechanisms behind its positive effects to permit a more suitable application. Experimental models have provided converging evidence that tDCS elicits improvements in learning and memory by modulating both excitability and synaptic plasticity in neurons. Recently, among tDCS neurobiological effects, neural synchronization and dendritic structural changes have been reported in physiological and pathological conditions, suggesting possible effects at the neuronal circuit level. In this review, we bring in to focus the emerging effects of tDCS on the structural plasticity changes and neuronal rewiring, with the intent to match these two aspects with the underpinning molecular mechanisms identified so far, providing a new perspective to work on to unveil novel tDCS therapeutic use to treat brain dysfunctions.

5.
Stem Cells ; 40(3): 318-331, 2022 03 31.
Article in English | MEDLINE | ID: mdl-35356985

ABSTRACT

Neural stem and progenitor cell (NSPC) depletion may play a crucial role in the cognitive impairment observed in many age-related non-communicable diseases. Insulin resistance affects brain functions through a plethora of mechanisms that remain poorly understood. In an experimental model of insulin resistant NSPCs, we identified a novel molecular circuit relying on insulin receptor substrate-1 (IRS-1)/ Forkhead box O (FoxO) signaling cascade and inhibiting the recruitment of transcription factors FoxO1 and FoxO3a on the promoters of genes regulating proliferation and self-renewal. Insulin resistance also epigenetically increased the expression of cyclin-dependent kinase inhibitor 1 (p21) and accelerated NSPC senescence. Of note, we found that stimulation of NSPCs with NSPC-derived exosomes (exo-NSPC) rescued IRS-1/FoxO activation and counteracted both the reduced proliferation and senescence of stem cells. Accordingly, intranasal administration of exo-NSPC counteracted the high-fat diet-dependent impairment of adult hippocampal neurogenesis in mice by restoring the balance between proliferating and senescent NSPCs in the hippocampus. Our findings suggest a novel mechanism underlying the metabolic control of NSPC fate potentially involved in the detrimental effects of metabolic disorders on brain plasticity. In addition, our data highlight the role of extracellular vesicle-mediated signals in the regulation of cell fate within the adult neurogenic niche.


Subject(s)
Extracellular Vesicles , Insulin Resistance , Neural Stem Cells , Animals , Hippocampus , Mice , Neural Stem Cells/metabolism , Neurogenesis
6.
Stroke ; 53(5): 1746-1758, 2022 05.
Article in English | MEDLINE | ID: mdl-35291824

ABSTRACT

BACKGROUND: More effective strategies are needed to promote poststroke functional recovery. Here, we evaluated the impact of bihemispheric transcranial direct current stimulation (tDCS) on forelimb motor function recovery and the underlying mechanisms in mice subjected to focal ischemia of the motor cortex. METHODS: Photothrombotic stroke was induced in the forelimb brain motor area, and tDCS was applied once per day for 3 consecutive days, starting 72 hours after stroke. Grid-walking, single pellet reaching, and grip strength tests were conducted to assess motor function. Local field potentials were recorded to evaluate brain connectivity. Western immunoblotting, ELISA, quantitative real-time polymerase chain reaction, and Golgi-Cox staining were used to uncover tDCS-mediated stroke recovery mechanisms. RESULTS: Among our results, tDCS increased the rate of motor recovery, anticipating it at the early subacute stage. In this window, tDCS enhanced BDNF (brain-derived neurotrophic factor) expression and dendritic spine density in the peri-infarct motor cortex, along with increasing functional connectivity between motor and somatosensory cortices. Treatment with the BDNF TrkB (tropomyosin-related tyrosine kinase B) receptor inhibitor, ANA-12, prevented tDCS effects on motor recovery and connectivity as well as the increase of spine density, pERK (phosphorylated extracellular signal-regulated kinase), pCaMKII (phosphorylated calcium/calmodulin-dependent protein kinase II), pMEF (phosphorylated myocyte-enhancer factor), and PSD (postsynaptic density)-95. The tDCS-promoted rescue was paralleled by enhanced plasma BDNF level, suggesting its potential role as circulating prognostic biomarker. CONCLUSIONS: The rate of motor recovery is accelerated by tDCS applied in the subacute phase of stroke. Anticipation of motor recovery via vicariate pathways or neural reserve recruitment would potentially enhance the efficacy of standard treatments, such as physical therapy, which is often delayed to a later stage when plastic responses are progressively lower.


Subject(s)
Motor Cortex , Stroke , Transcranial Direct Current Stimulation , Animals , Brain-Derived Neurotrophic Factor , Disease Models, Animal , Humans , Mice , Neuronal Plasticity , Stroke/therapy , Transcranial Direct Current Stimulation/methods
7.
Cereb Cortex ; 30(5): 2972-2985, 2020 05 14.
Article in English | MEDLINE | ID: mdl-31821409

ABSTRACT

Consistent body of evidence shows that transcranial direct-current stimulation (tDCS) over the primary motor cortex (M1) facilitates motor learning and promotes recovery after stroke. However, the knowledge of molecular mechanisms behind tDCS effects needs to be deepened for a more rational use of this technique in clinical settings. Here we characterized the effects of anodal tDCS of M1, focusing on its impact on glutamatergic synaptic transmission and plasticity. Mice subjected to tDCS displayed increased long-term potentiation (LTP) and enhanced basal synaptic transmission at layer II/III horizontal connections. They performed better than sham-stimulated mice in the single-pellet reaching task and exhibited increased forelimb strength. Dendritic spine density of layer II/III pyramidal neurons was also increased by tDCS. At molecular level, tDCS enhanced: 1) BDNF expression, 2) phosphorylation of CREB, CaMKII, and GluA1, and 3) S-nitrosylation of GluA1 and HDAC2. Blockade of nitric oxide synthesis by L-NAME prevented the tDCS-induced enhancement of GluA1 phosphorylation at Ser831 and BDNF levels, as well as of miniature excitatory postsynaptic current (mEPSC) frequency, LTP and reaching performance. Collectively, these findings demonstrate that anodal tDCS engages plasticity mechanisms in the M1 and highlight a role for nitric oxide (NO) as a novel mediator of tDCS effects.


Subject(s)
Motor Cortex/physiology , Neuronal Plasticity/physiology , Nitric Oxide/physiology , Signal Transduction/physiology , Transcranial Direct Current Stimulation/methods , Animals , Electrodes , Male , Mice , Mice, Inbred C57BL , Motor Cortex/drug effects , NG-Nitroarginine Methyl Ester/pharmacology , Neuronal Plasticity/drug effects , Nitric Oxide/antagonists & inhibitors , Organ Culture Techniques , Signal Transduction/drug effects
9.
Cereb Cortex ; 29(5): 1851-1865, 2019 05 01.
Article in English | MEDLINE | ID: mdl-29790931

ABSTRACT

Spike timing-dependent plasticity (STDP) is a form of activity-dependent remodeling of synaptic strength that underlies memory formation. Despite its key role in dictating learning rules in the brain circuits, the molecular mechanisms mediating STDP are still poorly understood. Here, we show that spike timing-dependent long-term depression (tLTD) and A-type K+ currents are modulated by pharmacological agents affecting the levels of active glycogen-synthase kinase 3 (GSK3) and by GSK3ß knockdown in layer 2/3 of the mouse somatosensory cortex. Moreover, the blockade of A-type K+ currents mimics the effects of GSK3 up-regulation on tLTD and occludes further changes in synaptic strength. Pharmacological, immunohistochemical and biochemical experiments revealed that GSK3ß influence over tLTD induction is mediated by direct phosphorylation at Ser-616 of the Kv4.2 subunit, a molecular determinant of A-type K+ currents. Collectively, these results identify the functional interaction between GSK3ß and Kv4.2 channel as a novel mechanism for tLTD modulation providing exciting insight into the understanding of GSK3ß role in synaptic plasticity.


Subject(s)
Glycogen Synthase Kinase 3 beta/metabolism , Long-Term Synaptic Depression/physiology , Neurons/physiology , Shal Potassium Channels/metabolism , Somatosensory Cortex/physiology , Animals , Excitatory Postsynaptic Potentials , Mice, Inbred C57BL , Neurons/metabolism , Phosphorylation , Somatosensory Cortex/metabolism
10.
Sci Rep ; 8(1): 262, 2018 01 10.
Article in English | MEDLINE | ID: mdl-29321633

ABSTRACT

Exposure to extremely low-frequency electromagnetic fields (ELFEF) influences the expression of key target genes controlling adult neurogenesis and modulates hippocampus-dependent memory. Here, we assayed whether ELFEF stimulation affects olfactory memory by modulating neurogenesis in the subventricular zone (SVZ) of the lateral ventricle, and investigated the underlying molecular mechanisms. We found that 30 days after the completion of an ELFEF stimulation protocol (1 mT; 50 Hz; 3.5 h/day for 12 days), mice showed enhanced olfactory memory and increased SVZ neurogenesis. These effects were associated with upregulated expression of mRNAs encoding for key regulators of adult neurogenesis and were mainly dependent on the activation of the Wnt pathway. Indeed, ELFEF stimulation increased Wnt3 mRNA expression and nuclear localization of its downstream target ß-catenin. Conversely, inhibition of Wnt3 by Dkk-1 prevented ELFEF-induced upregulation of neurogenic genes and abolished ELFEF's effects on olfactory memory. Collectively, our findings suggest that ELFEF stimulation increases olfactory memory via enhanced Wnt/ß-catenin signaling in the SVZ and point to ELFEF as a promising tool for enhancing SVZ neurogenesis and olfactory function.


Subject(s)
Electromagnetic Fields , Lateral Ventricles/physiology , Memory , Neurogenesis , Olfactory Cortex/physiology , Olfactory Cortex/radiation effects , Wnt Signaling Pathway , Animals , Discrimination, Psychological , Female , Male , Mice , Odorants , Olfactory Perception , Wnt Proteins/metabolism , beta Catenin/metabolism
11.
Int J Mol Sci ; 18(1)2016 Dec 28.
Article in English | MEDLINE | ID: mdl-28036021

ABSTRACT

Increased levels of unconjugated bilirubin are neurotoxic, but the mechanism leading to neurological damage has not been completely elucidated. Innovative strategies of investigation are needed to more precisely define this pathological process. By longitudinal in vivo bioluminescence imaging, we noninvasively visualized the brain response to hyperbilirubinemia in the MITO-Luc mouse, in which light emission is restricted to the regions of active cell proliferation. We assessed that acute hyperbilirubinemia promotes bioluminescence in the brain region, indicating an increment in the cell proliferation rate. Immunohistochemical detection in brain sections of cells positive for both luciferase and the microglial marker allograft inflammatory factor 1 suggests proliferation of microglial cells. In addition, we demonstrated that brain induction of bioluminescence was altered by pharmacological displacement of bilirubin from its albumin binding sites and by modulation of the blood-brain barrier permeability, all pivotal factors in the development of bilirubin-induced neurologic dysfunction. We also determined that treatment with minocycline, an antibiotic with anti-inflammatory and neuroprotective properties, or administration of bevacizumab, an anti-vascular endothelial growth factor antibody, blunts bilirubin-induced bioluminescence. Overall the study supports the use of the MITO-Luc mouse as a valuable tool for the rapid response monitoring of drugs aiming at preventing acute bilirubin-induced neurological dysfunction.


Subject(s)
Blood-Brain Barrier/metabolism , Hyperbilirubinemia/diagnostic imaging , Luminescent Measurements/methods , Optical Imaging/methods , Animals , Bevacizumab/pharmacology , Blood-Brain Barrier/diagnostic imaging , Blood-Brain Barrier/drug effects , Female , Luciferases/genetics , Luciferases/metabolism , Male , Mice , Minocycline/pharmacology
12.
Sci Rep ; 6: 22180, 2016 Feb 24.
Article in English | MEDLINE | ID: mdl-26908001

ABSTRACT

The effects of transcranial direct current stimulation (tDCS) on brain functions and the underlying molecular mechanisms are yet largely unknown. Here we report that mice subjected to 20-min anodal tDCS exhibited one-week lasting increases in hippocampal LTP, learning and memory. These effects were associated with enhanced: i) acetylation of brain-derived neurotrophic factor (Bdnf) promoter I; ii) expression of Bdnf exons I and IX; iii) Bdnf protein levels. The hippocampi of stimulated mice also exhibited enhanced CREB phosphorylation, pCREB binding to Bdnf promoter I and recruitment of CBP on the same regulatory sequence. Inhibition of acetylation and blockade of TrkB receptors hindered tDCS effects at molecular, electrophysiological and behavioral levels. Collectively, our findings suggest that anodal tDCS increases hippocampal LTP and memory via chromatin remodeling of Bdnf regulatory sequences leading to increased expression of this gene, and support the therapeutic potential of tDCS for brain diseases associated with impaired neuroplasticity.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Epigenesis, Genetic , Long-Term Potentiation , Memory , Transcranial Direct Current Stimulation , Animals , Brain-Derived Neurotrophic Factor/genetics , Chromatin Assembly and Disassembly , Cyclic AMP Response Element-Binding Protein/metabolism , Hippocampus/metabolism , Hippocampus/physiology , Male , Mice , Mice, Inbred C57BL , Receptor, trkB/metabolism
13.
Cell Rep ; 14(5): 1195-1205, 2016 Feb 09.
Article in English | MEDLINE | ID: mdl-26804914

ABSTRACT

Adult neurogenesis plays increasingly recognized roles in brain homeostasis and repair and is profoundly affected by energy balance and nutrients. We found that the expression of Hes-1 (hairy and enhancer of split 1) is modulated in neural stem and progenitor cells (NSCs) by extracellular glucose through the coordinated action of CREB (cyclic AMP responsive element binding protein) and Sirt-1 (Sirtuin 1), two cellular nutrient sensors. Excess glucose reduced CREB-activated Hes-1 expression and results in impaired cell proliferation. CREB-deficient NSCs expanded poorly in vitro and did not respond to glucose availability. Elevated glucose also promoted Sirt-1-dependent repression of the Hes-1 promoter. Conversely, in low glucose, CREB replaced Sirt-1 on the chromatin associated with the Hes-1 promoter enhancing Hes-1 expression and cell proliferation. Thus, the glucose-regulated antagonism between CREB and Sirt-1 for Hes-1 transcription participates in the metabolic regulation of neurogenesis.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Glucose/pharmacology , Homeodomain Proteins/metabolism , Neural Stem Cells/metabolism , Sirtuin 1/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Caloric Restriction , Cell Self Renewal/drug effects , Cyclic AMP/metabolism , Gene Expression Regulation/drug effects , Hippocampus/drug effects , Hippocampus/metabolism , Homeodomain Proteins/genetics , Lysine/metabolism , Mice , Neural Stem Cells/drug effects , Promoter Regions, Genetic , Protein Binding/drug effects , Protein Kinases/metabolism , Transcription Factor HES-1
14.
Mol Neurobiol ; 49(3): 1472-86, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24532268

ABSTRACT

Throughout life, adult neurogenesis generates new neurons in the dentate gyrus of hippocampus that have a critical role in memory formation. Strategies able to stimulate this endogenous process have raised considerable interest because of their potential use to treat neurological disorders entailing cognitive impairment. We previously reported that mice exposed to extremely low-frequency electromagnetic fields (ELFEFs) showed increased hippocampal neurogenesis. Here, we demonstrate that the ELFEF-dependent enhancement of hippocampal neurogenesis improves spatial learning and memory. To gain insights on the molecular mechanisms underlying ELFEFs' effects, we extended our studies to an in vitro model of neural stem cells (NSCs) isolated from the hippocampi of newborn mice. We found that ELFEFs enhanced proliferation and neuronal differentiation of hippocampal NSCs by regulation of epigenetic mechanisms leading to pro-neuronal gene expression. Upon ELFEF stimulation of NSCs, we observed a significant enhancement of expression of the pro-proliferative gene hairy enhancer of split 1 and the neuronal determination genes NeuroD1 and Neurogenin1. These events were preceded by increased acetylation of H3K9 and binding of the phosphorylated transcription factor cAMP response element-binding protein (CREB) on the regulatory sequence of these genes. Such ELFEF-dependent epigenetic modifications were prevented by the Cav1-channel blocker nifedipine, and were associated with increased occupancy of CREB-binding protein (CBP) to the same loci within the analyzed promoters. Our results unravel the molecular mechanisms underlying the ELFEFs' ability to improve endogenous neurogenesis, pointing to histone acetylation-related chromatin remodeling as a critical determinant. These findings could pave the way to the development of novel therapeutic approaches in regenerative medicine.


Subject(s)
Electromagnetic Fields , Epigenesis, Genetic/physiology , Hippocampus/cytology , Hippocampus/physiology , Neurogenesis/physiology , Animals , Cell Proliferation/physiology , Cells, Cultured , Male , Mice , Mice, Inbred C57BL , Random Allocation
15.
PLoS One ; 8(8): e73246, 2013.
Article in English | MEDLINE | ID: mdl-23991183

ABSTRACT

Neural stem cells generate neurons in the hippocampal dentate gyrus in mammals, including humans, throughout adulthood. Adult hippocampal neurogenesis has been the focus of many studies due to its relevance in processes such as learning and memory and its documented impairment in some neurodegenerative diseases. However, we are still far from having a complete picture of the mechanism regulating this process. Our study focused on the possible role of cyclic nucleotide-gated (CNG) channels. These voltage-independent channels activated by cyclic nucleotides, first described in retinal and olfactory receptors, have been receiving increasing attention for their involvement in several brain functions. Here we show that the rod-type, CNGA1, and olfactory-type, CNGA2, subunits are expressed in hippocampal neural stem cells in culture and in situ in the hippocampal neurogenic niche of adult mice. Pharmacological blockade of CNG channels did not affect cultured neural stem cell proliferation but reduced their differentiation towards the neuronal phenotype. The membrane permeant cGMP analogue, 8-Br-cGMP, enhanced neural stem cell differentiation to neurons and this effect was prevented by CNG channel blockade. In addition, patch-clamp recording from neuron-like differentiating neural stem cells revealed cGMP-activated currents attributable to ion flow through CNG channels. The current work provides novel insights into the role of CNG channels in promoting hippocampal neurogenesis, which may prove to be relevant for stem cell-based treatment of cognitive impairment and brain damage.


Subject(s)
Cyclic GMP/pharmacology , Cyclic Nucleotide-Gated Cation Channels/physiology , Hippocampus/cytology , Neural Stem Cells/cytology , Neurogenesis/physiology , Animals , Blotting, Western , Cell Differentiation , Cell Proliferation , Cells, Cultured , Hippocampus/drug effects , Mice , Patch-Clamp Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...