ABSTRACT
Resveratrol is well-known for promoting health benefits due to its antioxidant, anti-aging, anti-carcinogenic, and other beneficial activities. Understanding the photophysics of resveratrol is essential for determining its applicability to pharmaceutical innovations. In the present work, we used an explore-then-assess strategy to map the internal conversion pathways of trans-resveratrol. This strategy consists of exploring the multidimensional configurational space with nonadiabatic dynamics simulations based on a semiempirical multireference method, followed by a feasibility assessment of reduced-dimensionality pathways at a high ab initio theoretical level. The exploration step revealed that internal conversion to the ground state may occur near five distinct conical intersections. The assessment step showed that the main photoisomerization pathway involves a twisted-pyramidalized S1/S0 conical intersection, yielding either trans or cis isomers. However, a secondary path was identified, where cis-trans isomerization happens in the excited state and internal conversion occurs at a cyclic conical intersection, yielding a closed-ring resveratrol derivative. This derivative, which can be formed through this direct path or an indirect photoexcitation, may be connected to the production of oxygen-reactive species previously reported and have implications in photodynamic therapy.
Subject(s)
Resveratrol , Resveratrol/chemistry , Isomerism , Photochemical Processes , Stereoisomerism , Molecular Dynamics Simulation , Quantum Theory , Stilbenes/chemistry , Stilbenes/radiation effectsABSTRACT
Pyrene fluorescence after a high-energy electronic excitation exhibits a prominent band shoulder not present after excitation at low energies. The standard assignment of this shoulder as a non-Kasha emission from the second-excited state (S2) has been recently questioned. To elucidate this issue, we simulated the fluorescence of pyrene using two different theoretical approaches based on vertical convolution and nonadiabatic dynamics with nuclear ensembles. To conduct the necessary nonadiabatic dynamics simulations with high-lying electronic states and deal with fluorescence timescales of about 100 ns of this large molecule, we developed new computational protocols. The results from both approaches confirm that the band shoulder is, in fact, due to S2 emission. We show that the non-Kasha behavior is a dynamic-equilibrium effect not caused by a metastable S2 minimum. However, it requires considerable vibrational energy, which can only be achieved in collisionless regimes after transitions into highly excited states. This strict condition explains why the S2 emission was not observed in some experiments.
ABSTRACT
Correction for 'Modeling the heating and cooling of a chromophore after photoexcitation' by Elizete Ventura et al., Phys. Chem. Chem. Phys., 2022, 24, 9403-9410, https://doi.org/10.1039/D2CP00686C.
ABSTRACT
The heating of a chromophore due to internal conversion and its cooling down due to energy dissipation to the solvent are crucial phenomena to characterize molecular photoprocesses. In this work, we simulated the ab initio nonadiabatic dynamics of cytosine, a prototypical chromophore undergoing ultrafast internal conversion, in three solvents-argon matrix, benzene, and water-spanning an extensive range of interactions. We implemented an analytical energy-transfer model to analyze these data and extract heating and cooling times. The model accounts for nonadiabatic effects, and excited- and ground-state energy transfer, and can analyze data from any dataset containing kinetic energy as a function of time. Cytosine heats up in the subpicosecond scale and cools down within 25, 4, and 1.3 ps in argon, benzene, and water, respectively. The time constants reveal that a significant fraction of the benzene and water heating occurs while cytosine is still electronically excited.
Subject(s)
Benzene , Heating , Argon , Cytosine , Solvents , WaterABSTRACT
Extended quantum chemical calculations were performed for the tetracene dimer to provide benchmark results, analyze the excimer survival process, and explore the possibility of using long-range-corrected (LC) time-dependent second-order density functional tight-biding (DFTB2) for this system. Ground- and first-excited-state optimized geometries, vertical excitations at relevant minima, and intermonomer displacement potential energy curves (PECs) were calculated for these purposes. Ground-state geometries were optimized with the scaled-opposite-spin (SOS) second-order Møller-Plesset perturbation (MP2) theory and LC-DFT (density functional theory) and LC-DFTB2 levels. Excited-state geometries were optimized with SOS-ADC(2) (algebraic diagrammatic construction to second-order) and the time-dependent approaches for the latter two methods. Vertical excitations and PECs were compared to multireference configuration interaction DFT (DFT/MRCI). All methods predict the lowest-energy S0 conformer to have monomers parallel and rotated relative to each other and the lowest S1 conformer to be of a displaced-stacked type. LC-DFTB2, however, presents some relevant differences regarding other conformers for S0. Despite some state-order inversions, overall good agreement between methods was observed in the spectral shape, state character, and PECs. Nevertheless, DFT/MRCI predicts that the S1 state should acquire a doubly excited-state character relevant to the excimer survival process and, therefore, cannot be completely described by the single reference methods used in this work. PECs also revealed an interesting relation between dissociation energies and the intermonomer charge-transfer interactions for some states.
ABSTRACT
High-level multireference electronic structure calculations have been performed to study the Cl- yield from photoexcited CF3CH2Cl (HCFC-133a). The analysis of this process tells that it relates to an electron transfer from the carbon to the Cl atom, forming a highly polar contact ion-pair complex, CF3HCH+···Cl-, in the excited (S3) state. This complex has a strong binding energy of 3.53 eV, from which 0.47 eV is due to an underlying hydrogen bond. Through comparison with the results obtained for the prototype CH3Cl system, where a similar ion-pair state associated with Cl- formation has also been observed, it is suggested that photodissociation of HCFC-133a can also yield Cl- through an analogous process. This hypothesis is further supported by nonadiabatic dynamics simulations, which shows formation of the ion-pair complex in the subpicosecond time scale.
ABSTRACT
Excimers play a key role in a variety of excited-state processes, such as exciton trapping, fluorescence quenching, and singlet-fission. The dynamics of benzene excimer formation in the first 2 ps after S1 excitation from the parallel-displaced geometry of the benzene dimer is reported here. It was simulated via nonadiabatic surface-hopping dynamics using the second-order algebraic diagrammatic construction (ADC(2)). After excitation, the benzene rings take â¼0.5-1.0 ps to approach each other in a parallel-stacked structure of the S1 minimum and stay in the excimer region for â¼0.1-0.4 ps before leaving due to excess vibrational energy. The S1-S2 gap widens considerably while the rings visit the excimer region in the potential energy surface. Our work provides detailed insight into correlations between nuclear and electronic structure in the excimer and shows that decreased ring distance goes along with enhanced charge transfer and that fast exciton transfer happens between the rings, leading to the equal probability of finding the exciton in each ring after around 1.0 ps.
ABSTRACT
For the first time, high-level multireference electronic structure calculations have been performed to study the photochemistry of CF3Cl, allowing a comprehensive interpretation and assignment of experimental data concerning fluorescence, ion-pair formation, and generation of CF3 fragments in several electronic states. All studied dissociation channels correlate either with Cl or Cl- in the ground state. On the other hand, a CF3 fragment can be generated either in the ground or excited state. A rationalization for the nonadiabatic relaxation of CF3Cl, including the formation of an (n4s) stable state and internal conversion at multiple-state intersections, has been provided. Our results explain the anomalous quenching of a charged fragment after low-energy excitation, a fact experimentally observed by separate groups. We show that the CF3+···Cl- ion pair undergoes an internal conversion to the ground state, producing neutral CF3 and Cl fragments. The results also allow understanding as to why CF3Cl is usually a nonemitting species and how UV emission could be induced.
ABSTRACT
We show that the importance sampling technique can effectively augment the range of problems where the nuclear ensemble approach can be applied. A sampling probability distribution function initially determines the collection of initial conditions for which calculations are performed, as usual. Then, results for a distinct target distribution are computed by introducing compensating importance sampling weights for each sampled point. This mapping between the two probability distributions can be performed whenever they are both explicitly constructed. Perhaps most notably, this procedure allows for the computation of temperature dependent observables. As a test case, we investigated the UV absorption spectra of phenol, which has been shown to have a marked temperature dependence. Application of the proposed technique to a range that covers 500 K provides results that converge to those obtained with conventional sampling. We further show that an overall improved rate of convergence is obtained when sampling is performed at intermediate temperatures. The comparison between calculated and the available measured cross sections is very satisfactory, as the main features of the spectra are correctly reproduced. As a second test case, one of Tully's classical models was revisited, and we show that the computation of dynamical observables also profits from the importance sampling technique. In summary, the strategy developed here can be employed to assess the role of temperature for any property calculated within the nuclear ensemble method, with the same computational cost as doing so for a single temperature.
ABSTRACT
State-of-the-art electronic structure calculations (MR-CISD) are used to map five different dissociation channels of CH3Cl along the C-Cl coordinate: (i) CH3(XÌ(2)A2â³) + Cl((2)P), (ii) CH3(3s(2)A1') + Cl((2)P), (iii) CH3(+)((1)A1') + Cl(-)((1)S), (iv) CH3(3p(2)E') + Cl((2)P), and (v) CH3(3p(2)A2â³) + Cl((2)P). By the first time these latter four dissociation channels, accessible upon VUV absorption, are described. The corresponding dissociation limits, obtained at the MR-CISD+Q level, are 3.70, 9.50, 10.08, 10.76, and 11.01 eV. The first channel can be accessed through nσ* and n3s states, while the second channel can be accessed through n(e)3s, n(e)3p(σ), and σ3s states. The third channel, corresponding to the CH3(+) + Cl(-) ion-pair, is accessed through n(e)3p(e) states. The fourth is accessed through n(e)3p(e), n(e)3p(σ), and σ3p(σ), while the fifth through σ3p(e) and σ(CH)σ* states. The population of the diverse channels is controlled by two geometrical spots, where intersections between multiple states allow a cascade of nonadiabatic events. The ion-pair dissociation occurs through formation of CH3(+)···Cl(-)and H2CH(+)···Cl(-) intermediate complexes bound by 3.69 and 4.65 eV. The enhanced stability of the H2CH(+)···Cl(-) complex is due to a CH···Cl hydrogen bond. A time-resolved spectroscopic setup is proposed to detect those complexes.
ABSTRACT
The UV-induced photochemistry of HCFC-132b (CF2 ClCH2 Cl) was investigated by computing excited-state properties with time-dependent density functional theory (TDDFT), multiconfigurational second-order perturbation theory (CASPT2), and coupled cluster with singles, doubles, and perturbative triples (CCSD(T)). Excited states calculated with TDDFT show good agreement with CASPT2 and CCSD(T) results, correctly predicting the main excited-states properties. Simulations of ultrafast nonadiabatic dynamics in the gas phase were performed, taking into account 25 electronic states at TDDFT level starting in two different spectral windows (8.5 ± 0.25 and 10.0 ± 0.25 eV). Experimental data measured at 123.6 nm (10 eV) is in very good agreement with our simulations. The excited-state lifetimes are 106 and 191 fs for the 8.5 and 10.0 eV spectral windows, respectively. Internal conversion to the ground state occurred through several different reaction pathways with different products, where 2Cl, C-Cl bond breakage, and HCl are the main photochemical pathways in the low-excitation region, representing 95% of all processes. On the other hand, HCl, HF, and C-Cl bond breakage are the main reaction pathways in the higher excitation region, with 77% of the total yield. © 2015 Wiley Periodicals, Inc.
ABSTRACT
We show by quantum mechanical/molecular mechanical (QM/MM) simulations that phenylbenzothiazoles undergoing an excited-state proton transfer (ESPT) can be used to probe protein binding sites. For 2-(2'-hydroxy-4'-aminophenyl)benzothiazole (HABT) bound to a tyrosine kinase, the absolute and relative intensities of the fluorescence bands arising from the enol and keto forms are found to be strongly dependent on the active-site conformation. The emission properties are tuned by hydrogen-bonding interactions of HABT with the neighboring amino acid T766 and with active-site water. The use of ESPT tuners opens the possibility of creating two-color fluorescent markers for protein binding sites, with potential applications in the detection of mutations in cancer cell lines.
Subject(s)
Fluorescent Dyes/chemistry , Protein Kinases/chemistry , Binding Sites , Catalytic Domain , Molecular Dynamics Simulation , Protein Kinases/metabolism , Protons , Quantum Theory , Spectrometry, Fluorescence , Thermodynamics , Thiazoles/chemistryABSTRACT
The absorption and fluorescence spectra of poly(p-phenylenevinylene) (PPV) oligomers with up to seven repeat units were theoretically investigated using the algebraic diagrammatic construction method to second order, ADC(2), combined with the resolution-of-the-identity (RI) approach. The ground and first excited state geometries of the oligomers were fully optimized. Vertical excitation energies and oscillator strengths of the first four transitions were computed. The vibrational broadening of the absorption and fluorescence spectra was studied using a semiclassical nuclear ensemble method. After correcting for basis set and solvent effects, we achieved a balanced description of the absorption and fluorescence spectra by means of the ADC(2) approach. This fact is documented by the computed Stokes shift along the PPV series, which is in good agreement with the experimental values. The experimentally observed band width of the UV absorption and fluorescence spectra is well reproduced by the present simulations showing that the nuclear ensemble generated should be well suitable for consecutive surface hopping dynamics simulations.
ABSTRACT
The photochemical deactivation process of HCFC-133a (C2H2F3Cl) was investigated by computing excited-state properties with a number of single-reference methods, including coupled cluster to approximated second order (CC2), algebraic diagrammatic construction to second order (ADC(2)), and time-dependent density functional theory (TDDFT). Excited states calculated with these methods, especially TDDFT, show good agreement with our previous multireference configuration interaction (MR-CISD) results. All tested methods were able to correctly predict the properties of the main series of excited states, the n-σ*, n-4p, and n-4s. Nonadiabatic dynamics in the gas phase considering 14 electronic states was simulated with TDDFT starting at the 10 ± 0.25 eV spectral window, to be compared to experimental data measured after 123.6 nm excitation. The excited-state lifetime is 137 fs. Internal conversion to the ground state occurred through several different reaction pathways with different products, including atomic elimination (Cl, F, or H), multifragmentation mechanisms (Cl+F, Cl+H, or F+H), and CC bond-fission mechanisms (alone or with Cl or H elimination). The main photochemical channels observed were Cl, Cl+H, and Cl+F eliminations, representing 54% of all processes.