Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Spine (Phila Pa 1976) ; 22(12): 1285-91, 1997 Jun 15.
Article in English | MEDLINE | ID: mdl-9201829

ABSTRACT

STUDY DESIGN: To better understand the relationships between primary mechanical factors of spinal cord trauma and secondary mechanisms of injury, this study evaluated regional blood flow and somatosensory evoked potential function in an in vivo canine model with controlled velocity spinal cord displacement and real-time piston-spinal cord interface pressure feedback. OBJECTIVES: To determine the effect of regional spinal cord blood flow and viscoelastic cord relaxation on recovery of neural conduction, with and without spinal cord decompression. SUMMARY OF BACKGROUND DATA: The relative contribution of mechanical and vascular factors on spinal cord injury remains undefined. METHODS: Twelve beagles were anesthetized and underwent T13 laminectomy. A constant velocity spinal cord compression was applied using a hydraulic loading piston with a subminiature pressure transducer rigidly attached to the spinal column. Spinal cord displacement was stopped when somatosensory evoked potential amplitudes decreased by 50% (maximum compression). Six animals were decompressed 5 minutes after maximum compression and were compared with six animals who had spinal cord displacement maintained for 3 hours and were not decompressed. Regional spinal cord blood flow was measured with a fluorescent microsphere technique. RESULTS: At maximum compression, regional spinal cord blood flow at the injury site fell from 19.0 +/- 1.3 mL/100 g/min to 12.6 +/- 1.0 mL/100 g/min, whereas piston-spinal cord interface pressure was 30.5 +/- 1.8 kPa, and cord displacement measured 2.1 +/- 0.1 mm (mean +/- SE). Five minutes after the piston translation was stopped, the spinal cord interface pressure had dissipated 51%, whereas the somatosensory evoked potential amplitudes continued to decrease to 16% of baseline. In the sustained compression group, cord interface pressure relaxed to 13% of maximum within 90 minutes; however, no recovery of somatosensory evoked potential function occurred, and regional spinal cord blood flow remained significantly lower than baseline at 30 and 180 minutes after maximum compression. In the six animals that underwent spinal cord decompression, somatosensory evoked potential function and regional spinal cord blood flow recovered to baseline 30 minutes after maximum compression. CONCLUSIONS: Despite rapid cord relaxation of more than 50% within 5 minutes after maximum compression, somatosensory evoked potential conduction recovered only with early decompression. Spinal cord decompression was associated with an early recovery of regional spinal cord blood flow and somatosensory evoked potential recovery. By 3 hours, spinal cord blood flow was similar in both the compressed and decompressed groups, despite that somatosensory evoked potential recovery occurred only in the decompressed group.


Subject(s)
Evoked Potentials, Somatosensory/physiology , Spinal Cord Compression/physiopathology , Spinal Cord Injuries/physiopathology , Spinal Cord/blood supply , Animals , Disease Models, Animal , Dogs , Regional Blood Flow/physiology , Spinal Cord/physiopathology , Spinal Cord Injuries/etiology , Stress, Mechanical , Time Factors
2.
J Neurotrauma ; 14(12): 951-62, 1997 Dec.
Article in English | MEDLINE | ID: mdl-9475376

ABSTRACT

Although surgical decompression is often advocated for acute spinal cord injury, the timing and efficacy of early treatment have not been clinically proven. Our objectives were to determine the importance of early spinal cord decompression on recovery of evoked potential conduction under precision loading conditions and to determine if regional vascular mechanisms could be linked to electrophysiologic recovery. Twenty-one mature beagles were anesthetized and mechanically ventilated to maintain normal respiratory and acid-base balance. Somatosensory-evoked potentials from the upper and lower extremities were measured at regular intervals. The spinal cord at T-13 was loaded dorsally under precision loading conditions until evoked potential amplitudes had been reduced by 50%. At this functional endpoint, spinal cord displacement was maintained for either 30 (n = 7), 60 (n = 8), or 180 min (n = 6). Spinal cord decompression was followed by a 3-h monitoring period. Regional spinal cord blood flow was measured with fluorescent microspheres at baseline (following laminectomy) immediately after stopping dynamic cord compression, 5, 15, and 180 min after decompression. Within 5 min after stopping dynamic compression, evoked potential signals were absent in all dogs. We observed somatosensory-evoked potential recovery in 6 of 7 dogs in the 30-min compression group, 5 of 8 dogs in the 60-min compression group, and 0 of 6 dogs in the 180-min compression group. Recovery in the 30- and 60-min groups varied significantly from the 180-min group (p < 0.05). Regional spinal cord blood flow at baseline, 21.4+/-2.2 ml/100/g/min (combined group mean +/- SE) decreased to 4.1+/-0.7 ml/100 g/min after stopping dynamic compression. Reperfusion flows after decompression were inversely related to duration of compression. Of the 7 dogs in the 30 min compression group, 5 min after decompression the blood flow was 49.1+/-3.1 ml/100 g/min, which was greater than two times baseline. In the 180-min compression group early post-decompression blood flow, 19.8+/-6.2 ml/100 g/min, was not significantly different than baseline. Of the 8 dogs in the 60-min compression group, 5 who recovered evoked potential conduction revealed a lower spinal cord blood flow sampled immediately after stopping dynamic compression, 2.1+/-0.4 ml/100 g/min, compared to the 3 who did not recover where blood flow was 8.4+/-2.1 ml/100 g/min (p < 0.05). Reperfusion flows measured as the interval change in blood flow between the time dynamic compression was stopped to 5, 15, or 180 min after decompression, were significantly greater in those dogs that recovered evoked potential function (p < 0.05). Three hours after decompression, spinal cord blood flow in the 3 dogs in the 60-min compression group with no recovery, 11.1+/-2.1 ml/100 g/min, was significantly less than the spinal cord blood flow of the recovered group (n = 5), 20.5+/-2.2 ml/100 g/min. These data illustrate the importance of early time-dependent events following precision dynamic spinal cord loading and sustained compression conditions. Spinal cord decompression performed within 1 h of evoked potential loss resulted in significant electrophysiologic recovery after 3 h of monitoring. This study showed that the degree of early reperfusion hyperemia after decompression was inversely proportional to the duration of spinal cord compression and proportional to electrophysiologic recovery. Residual blood flow during the sustained compression period was significantly higher in those dogs that did not recover evoked potential function after decompression suggesting a reperfusion injury. These results indicate that, after precise dynamic spinal cord loading to a point of functional conduction deficit (50% decline in evoked potential amplitude), a critical time period exists where intervention in the form of early spinal cord decompression can lead to effective recovery of electrophysiologic function in the 1- to 3-h post-decompression p


Subject(s)
Decompression , Spinal Cord Injuries/therapy , Animals , Biomechanical Phenomena , Blood Gas Analysis , Blood Pressure/physiology , Dogs , Electrophysiology , Evoked Potentials, Somatosensory/physiology , Microspheres , Regional Blood Flow/physiology , Spinal Cord/blood supply , Spinal Cord Injuries/physiopathology
3.
Environ Pollut ; 80(1): 17-23, 1993.
Article in English | MEDLINE | ID: mdl-15091867

ABSTRACT

Cormorant eggs and lipid samples from juvenile Cormorants were analyzed for 14 organochlorine contaminants. Low concentrations (geometric mean < 0.05 microg/g) of hexachlorobenzene (HCB), lindane, oxy-chlordane, heptachlor epoxide, dieldrin, endrin, mirex, DDD and DDT in eggs primarily reflected the wintering-ground origin of organochlorine contaminants. Overall geometric mean concentrations of DDE and PCBs in Cormorant eggs were 3.90 and 2.22 microg/g egg respectively, and would not affect reproduction or eggshell thickness. Eggshells averaged 0.44 mm in thickness and no correlation (r2 = 0.17) with log-transformed DDE residues in Cormorant eggs was evident. Only DDE and PCBs were detected in lipid samples from 5- to 8-week-old Cormorants (geometric mean approximately 1.0 microg/g lipid for each compound). The PCB: DDE ratios in Cormorant lipid from some individual colonies were 2-3.5 times greater than the ratio in eggs from the same colony, suggesting an accumulation of PCBs related to local diet. Juvenile Cormorants might serve as regional indicators of chemical residue contamination in Alberta, and provide a temporal perspective on changes in contaminant burdens in aquatic ecosystems.

SELECTION OF CITATIONS
SEARCH DETAIL