Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 64(19): 14377-14425, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34569791

ABSTRACT

This study describes a novel series of UDP-N-acetylglucosamine acyltransferase (LpxA) inhibitors that was identified through affinity-mediated selection from a DNA-encoded compound library. The original hit was a selective inhibitor of Pseudomonas aeruginosa LpxA with no activity against Escherichia coli LpxA. The biochemical potency of the series was optimized through an X-ray crystallography-supported medicinal chemistry program, resulting in compounds with nanomolar activity against P. aeruginosa LpxA (best half-maximal inhibitory concentration (IC50) <5 nM) and cellular activity against P. aeruginosa (best minimal inhibitory concentration (MIC) of 4 µg/mL). Lack of activity against E. coli was maintained (IC50 > 20 µM and MIC > 128 µg/mL). The mode of action of analogues was confirmed through genetic analyses. As expected, compounds were active against multidrug-resistant isolates. Further optimization of pharmacokinetics is needed before efficacy studies in mouse infection models can be attempted. To our knowledge, this is the first reported LpxA inhibitor series with selective activity against P. aeruginosa.


Subject(s)
Acyltransferases/antagonists & inhibitors , Anti-Bacterial Agents/pharmacology , Drug Discovery , Enzyme Inhibitors/pharmacology , Pseudomonas aeruginosa/drug effects , Anti-Bacterial Agents/chemistry , Crystallography, X-Ray , Drug Resistance, Bacterial/drug effects , Enzyme Inhibitors/chemistry , Escherichia coli/enzymology , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship
2.
Methods Appl Fluoresc ; 3(4): 045002, 2015 Oct 14.
Article in English | MEDLINE | ID: mdl-29148510

ABSTRACT

A well-documented obstacle in the synthesis of functionalized rhodamine dyes is the generation of regioisomers which are difficult to separate. These isomers occur due to the use of unsymmetrical anhydride reagents, which possess two potential points of reactivity where condensation with meta-aminophenols can take place. In this report we describe a method which eliminates this problem by using phthalaldehydic acids as anhydride replacements. These reagents provide only one point of reactivity for the aminophenol, thus allowing direct access to single isomer tetramethylrhodamines and avoiding isomer generation altogether. A range of functionalities are shown to be tolerated at the 5- and 6-position of the dye compounds which are prepared in up to gram quantities using our method. The scope of the method is further demonstrated by the preparation of additional rhodamine family members Rhodamine B and X-Rhodamine.

3.
Bioorg Med Chem Lett ; 24(15): 3469-74, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24953599

ABSTRACT

The metal-dependent phosphatase PPM1D (WIP1) is an important oncogene in cancer, with over-expression of the protein being associated with significantly worse clinical outcomes. In this communication we describe the discovery and optimization of novel 2,4-bisarylthiazoles that phenocopy the knockdown of PPM1D, without inhibiting its phosphatase activity. These compounds cause growth inhibition at nanomolar concentrations, induce apoptosis, activate p53 and display impressive cell-line selectivity. The results demonstrate the potential for targeting phenotypes in drug discovery when tackling challenging targets or unknown mechanisms.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Phosphoprotein Phosphatases/antagonists & inhibitors , Thiazoles/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Discovery , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Phenotype , Phosphoprotein Phosphatases/metabolism , Protein Phosphatase 2C , Structure-Activity Relationship , Thiazoles/chemical synthesis , Thiazoles/chemistry , Tumor Suppressor Protein p53/metabolism
4.
J Med Chem ; 53(24): 8498-507, 2010 Dec 23.
Article in English | MEDLINE | ID: mdl-21080722

ABSTRACT

Following the discovery of dibenzo[b,d]thiophen-4-yl)-2-morpholino-4H-chromen-4-one (NU7441) ( Leahy , J. J. J. ; Golding , B. T. ; Griffin , R. J. ; Hardcastle , I. R. ; Richardson , C. ; Rigoreau , L. ; Smith , G. C. M. Bioorg. Med. Chem. Lett. 2004 , 14 , 6083 - 6087) as a potent inhibitor (IC50 = 30 nM) of DNA-dependent protein kinase (DNA-PK), we have investigated analogues in which the chromen-4-one core template has been replaced by aza-heterocyclic systems: 9-substituted 2-morpholin-4-ylpyrido[1,2-a]pyrimidin-4-ones and 8-substituted 2-morpholin-4-yl-1H-quinolin-4-ones. The 8- and 9-substituents were either dibenzothiophen-4-yl or dibenzofuran-4-yl, which were each further substituted at the 1-position with water-solubilizing groups [NHCO(CH2)(n)NR¹R², where n = 1 or 2 and the moiety R¹R²N was derived from a library of primary and secondary amines (e.g., morpholine)]. The inhibitors were synthesized by employing a multiple-parallel approach in which the two heterocyclic components were assembled by Suzuki-Miyaura cross-coupling. Potent DNA-PK inhibitory activity was generally observed across the compound series, with structure-activity studies indicating that optimal potency resided in pyridopyrimidin-4-ones bearing a substituted dibenzothiophen-4-yl group. Several of the newly synthesized compounds (e.g., 2-morpholin-4-yl-N-[4-(2-morpholin-4-yl-4-oxo-4H-pyrido[1,2-a]pyrimidin-9-yl)dibenzothiophen-1-yl]acetamide) combined high potency against the target enzyme (DNA-PK IC50 = 8 nM) with promising activity as potentiators of ionizing radiation-induced cytotoxicity in vitro.


Subject(s)
Benzopyrans/chemistry , DNA-Activated Protein Kinase/antagonists & inhibitors , Pyridines/chemical synthesis , Pyrimidinones/chemical synthesis , Quinolones/chemical synthesis , Cell Membrane Permeability , DNA Damage/drug effects , DNA Damage/radiation effects , Furans/chemical synthesis , Furans/chemistry , Furans/pharmacology , HeLa Cells , Humans , Pyridines/chemistry , Pyridines/pharmacology , Pyrimidinones/chemistry , Pyrimidinones/pharmacology , Quinolones/chemistry , Quinolones/pharmacology , Small Molecule Libraries , Structure-Activity Relationship , Thiophenes/chemical synthesis , Thiophenes/chemistry , Thiophenes/pharmacology
5.
Org Biomol Chem ; 5(16): 2670-7, 2007 Aug 21.
Article in English | MEDLINE | ID: mdl-18019542

ABSTRACT

8-Substituted 2-morpholin-4-yl-quinolin-4-ones and 9-substituted 2-morpholin-4-yl-pyrido[1,2-a]pyrimidin-4-ones with selected aryl and heteroaryl groups as the substituent have been synthesised as potential inhibitors of DNA-dependent protein kinase. A multiple-parallel approach, employing Suzuki cross-coupling methodology, was utilised in the preparation of 8-substituted 2-morpholin-4-yl-quinolin-4-ones. For this purpose 8-bromo-2-morpholin-4-yl-quinolin-4-one was required as an intermediate. This compound was obtained by adapting a literature route in which thermal cyclocondensation of (2-bromoanilino)-morpholin-4-yl-5-methylene-2,2-dimethyl[1,3]dioxane-4,6-dione afforded 8-bromo-2-morpholin-4-yl-quinolin-4-one. A multiple-parallel approach, employing Suzuki cross-coupling methodology, was also utilised to prepare 9-substituted 2-morpholin-4-yl-pyrido[1,2-a]pyrimidin-4-ones using 9-hydroxy-2-morpholin-4-yl-pyrido[1,2-a]pyrimidin-4-one O-trifluoromethanesulfonate as an intermediate. 8-Substituted 2-morpholin-4-yl-quinolin-4-ones and 9-substituted 2-morpholin-4-yl-pyrido[1,2-a]pyrimidin-4-ones were both inhibitors of DNA-dependent protein kinase. When the substituent was dibenzothiophen-4-yl, dibenzofuran-4-yl or biphen-3-yl, IC50 values in the low nanomolar range were observed. Interestingly, the pyridopyrimidinones and quinolinones were essentially equipotent with the corresponding 8-substituted 2-morpholin-4-yl-chromen-4-ones previously reported (I. R. Hardcastle, X. Cockcroft, N. J. Curtin, M. Desage El-Murr, J. J. J. Leahy, M. Stockley, B. T. Golding, L. Rigoreau, C. Richardson, G. C. M. Smith and R. J. Griffin, J. Med. Chem., 2005, 48, 7829-7846).


Subject(s)
DNA-Activated Protein Kinase/antagonists & inhibitors , Pyrimidinones/pharmacology , Quinolones/pharmacology , Molecular Structure , Pyrimidinones/chemical synthesis , Pyrimidinones/chemistry , Quinolones/chemical synthesis , Quinolones/chemistry , Stereoisomerism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...