Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(22)2023 Nov 11.
Article in English | MEDLINE | ID: mdl-38003406

ABSTRACT

Congenital Myasthenic Syndromes (CMSs) are rare inherited diseases of the neuromuscular junction characterized by muscle weakness. CMSs with acetylcholinesterase deficiency are due to pathogenic variants in COLQ, a collagen that anchors the enzyme at the synapse. The two COLQ N-terminal domains have been characterized as being biochemical and functional. They are responsible for the structure of the protein in the triple helix and the association of COLQ with acetylcholinesterase. To deepen the analysis of the distal C-terminal peptide properties and understand the CMSs associated to pathogenic variants in this domain, we have analyzed the case of a 32 year old male patient bearing a homozygote splice site variant c.1281 C > T that changes the sequence of the last 28 aa in COLQ. Using COS cell and mouse muscle cell expression, we show that the COLQ variant does not impair the formation of the collagen triple helix in these cells, nor its association with acetylcholinesterase, and that the hetero-oligomers are secreted. However, the interaction of COLQ variant with LRP4, a signaling hub at the neuromuscular junction, is decreased by 44% as demonstrated by in vitro biochemical methods. In addition, an increase in all acetylcholine receptor subunit mRNA levels is observed in muscle cells derived from the patient iPSC. All these approaches point to pathophysiological mechanisms essentially characterized by a decrease in signaling and the presence of immature acetylcholine receptors.


Subject(s)
Myasthenic Syndromes, Congenital , Male , Humans , Animals , Mice , Adult , Myasthenic Syndromes, Congenital/genetics , Myasthenic Syndromes, Congenital/metabolism , Acetylcholinesterase/genetics , Acetylcholinesterase/metabolism , Neuromuscular Junction/metabolism , Receptors, Cholinergic/metabolism , Collagen/metabolism , Mutation
2.
J Biol Chem ; 299(8): 104962, 2023 08.
Article in English | MEDLINE | ID: mdl-37356721

ABSTRACT

Collagen Q (ColQ) is a nonfibrillar collagen that plays a crucial role at the vertebrate neuromuscular junction (NMJ) by anchoring acetylcholinesterase to the synapse. ColQ also functions in signaling, as it regulates acetylcholine receptor clustering and synaptic gene expression, in a manner dependent on muscle-specific kinase (MuSK), a key protein in NMJ formation and maintenance. MuSK forms a complex with low-density lipoprotein receptor-related protein 4 (LRP4), its coreceptor for the proteoglycan agrin at the NMJ. Previous studies suggested that ColQ also interacts with MuSK. However, the molecular mechanisms underlying ColQ functions and ColQ-MuSK interaction have not been fully elucidated. Here, we investigated whether ColQ binds directly to MuSK and/or LRP4 and whether it modulates agrin-mediated MuSK-LRP4 activation. Using coimmunoprecipitation, pull-down, plate-binding assays, and surface plasmon resonance, we show that ColQ binds directly to LRP4 but not to MuSK and that ColQ interacts indirectly with MuSK through LRP4. In addition, we show that the LRP4 N-terminal region, which contains the agrin-binding sites, is also crucial for ColQ binding to LRP4. Moreover, ColQ-LRP4 interaction was reduced in the presence of agrin, suggesting that agrin and ColQ compete for binding to LRP4. Strikingly, we reveal ColQ has two opposing effects on agrin-induced MuSK-LRP4 signaling: it constitutively reduces MuSK phosphorylation levels in agrin-stimulated myotubes but concomitantly increases MuSK accumulation at the muscle cell surface. Our results identify LRP4 as a major receptor of ColQ and provide new insights into mechanisms of ColQ signaling and acetylcholinesterase anchoring at the NMJ.


Subject(s)
Acetylcholinesterase , Agrin , Collagen , Neuromuscular Junction , Humans , Acetylcholinesterase/metabolism , Agrin/genetics , Agrin/metabolism , Collagen/metabolism , LDL-Receptor Related Proteins/genetics , LDL-Receptor Related Proteins/metabolism , Muscle Fibers, Skeletal/metabolism , Neuromuscular Junction/metabolism , Receptor Protein-Tyrosine Kinases/metabolism
3.
Stem Cell Res ; 49: 102106, 2020 12.
Article in English | MEDLINE | ID: mdl-33370874

ABSTRACT

Congenital myasthenic syndromes (CMS) are a class of inherited disorders affecting the neuromuscular junction, a synapse whose activity is essential for movement. CMS with acetylcholinesterase (AChE) deficiency are caused by mutations in COLQ, a collagen that anchors AChE in the synapse. To study the pathophysiological mechanisms of the disease in human cells, we have generated iPSC from a patient's Peripheral Blood Mononuclear cells (PBMC) by reprogramming these cells using a non-integrative method using Sendai viruses bearing the four Yamanaka factors Oct3/4, Sox2, Klf4, and L-Myc.


Subject(s)
Cell Line , Induced Pluripotent Stem Cells , Myasthenic Syndromes, Congenital , Acetylcholinesterase/genetics , Collagen , Humans , Kruppel-Like Factor 4 , Leukocytes, Mononuclear , Muscle Proteins/genetics , Mutation/genetics , Myasthenic Syndromes, Congenital/genetics
4.
Development ; 147(22)2020 11 16.
Article in English | MEDLINE | ID: mdl-33199350

ABSTRACT

The neuromuscular junction (NMJ) has been the model of choice to understand the principles of communication at chemical synapses. Following groundbreaking experiments carried out over 60 years ago, many studies have focused on the molecular mechanisms underlying the development and physiology of these synapses. This Review summarizes the progress made to date towards obtaining faithful models of NMJs in vitro We provide a historical approach discussing initial experiments investigating NMJ development and function from Xenopus to mice, the creation of chimeric co-cultures, in vivo approaches and co-culture methods from ex vivo and in vitro derived cells, as well as the most recent developments to generate human NMJs. We discuss the benefits of these techniques and the challenges to be addressed in the future for promoting our understanding of development and human disease.


Subject(s)
Motor Neurons/metabolism , Muscle Fibers, Skeletal/metabolism , Neuromuscular Junction/metabolism , Animals , Coculture Techniques , Humans , Mice , Motor Neurons/cytology , Muscle Fibers, Skeletal/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...