Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Anal Bioanal Chem ; 410(27): 6985-6990, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30155702

ABSTRACT

L-asparaginase or ASNase (L-asparagine aminohydrolase, E.C.3.5.1.1) is an enzyme clinically accepted as an antitumor agent to treat acute lymphoblastic leukemia (ALL) and lymphosarcoma through the depletion of L-asparagine (L-Asn) resulting in cytotoxicity to leukemic cells. ASNase is also important in the food industry, preventing acrylamide formation in processed foods. Several quantification techniques have been developed and used for the measurement of the ASNase activity, but standard pharmaceutical quality control methods were hardly reported, and in general, no official quality control guidelines were defined. To overcome this lack of information and to demonstrate the advantages and limitations, this work properly compares the traditional colorimetric methods (Nessler; L-aspartic acid ß-hydroxamate (AHA); and indooxine) and the high-performance liquid chromatography (HPLC) method. A comparison of the methods using pure ASNase shows that the colorimetric methods both overestimate (Nessler) and underestimate (AHA and indooxine) the ASNase activity when compared to the values obtained with HPLC, considered the most precise method as this method monitors both substrate consumption and product formation, allowing for overall mass-balance. Correlation and critical analysis of each method relative to the HPLC method were carried out, resulting in a demonstration that it is crucial to select a proper method for the quantification of ASNase activity, allowing bioequivalence studies and individualized monitoring of different ASNase preparations. Graphical abstract ᅟ.


Subject(s)
Asparaginase/metabolism , Colorimetry/methods , Enzyme Assays/methods , Asparaginase/analysis , Asparagine/analogs & derivatives , Asparagine/metabolism , Aspartic Acid/metabolism , Chromatography, High Pressure Liquid/methods , Humans
2.
Phys Chem Chem Phys ; 19(39): 26934-26943, 2017 Oct 11.
Article in English | MEDLINE | ID: mdl-28956042

ABSTRACT

The properties of double salt ionic liquids based on solutions of cholinium acetate ([Ch][OAc]), ethanolammonium acetate ([NH3(CH2)2OH][OAc]), hydroxylammonium acetate ([NH3OH][OAc]), ethylammonium acetate ([NH3CH2CH3][OAc]), and tetramethylammonium acetate ([N(CH3)4][OAc]) in 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]) were investigated by NMR spectroscopy and X-ray crystallography. Through mixture preparation, the solubility of [N(CH3)4][OAc] is the lowest, and [Ch][OAc] shows a 3-fold lower solubility than the other hydroxylated ammonium acetate-based salts in [C2mim][OAc] at room temperature. NMR and X-ray crystallographic studies of the pure salts suggest that the molecular-level mechanisms governing such miscibility differences are related to the weaker interactions between the -NH3 groups and [OAc]-, even though three of these salts possess the same strong 1 : 1 hydrogen bonds between the cation -OH group and the [OAc]- ion. The formation of polyionic clusters between the anion and those cations with unsatisfied hydrogen bond donors seems to be a new tool by which the solubility of these salts in [C2mim][OAc] can be controlled.

SELECTION OF CITATIONS
SEARCH DETAIL