Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Med Chem ; 64(4): 2186-2204, 2021 02 25.
Article in English | MEDLINE | ID: mdl-33570940

ABSTRACT

The zinc-containing histone deacetylase enzyme HDAC7 is emerging as an important regulator of immunometabolism and cancer. Here, we exploit a cavity in HDAC7, filled by Tyr303 in HDAC1, to derive new inhibitors. Phenacetyl hydroxamates and 2-phenylbenzoyl hydroxamates bind to Zn2+ and are 50-2700-fold more selective inhibitors of HDAC7 than HDAC1. Phenylbenzoyl hydroxamates are 30-70-fold more potent HDAC7 inhibitors than phenacetyl hydroxamates, which is attributed to the benzoyl aromatic group interacting with Phe679 and Phe738. Phthalimide capping groups, including a saccharin analogue, decrease rotational freedom and provide hydrogen bond acceptor carbonyl/sulfonamide oxygens that increase inhibitor potency, liver microsome stability, solubility, and cell activity. Despite being the most potent HDAC7 inhibitors to date, they are not selective among class IIa enzymes. These strategies may help to produce tools for interrogating HDAC7 biology related to its catalytic site.


Subject(s)
Benzamides/pharmacology , Benzeneacetamides/pharmacology , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Hydroxamic Acids/pharmacology , Benzamides/chemical synthesis , Benzamides/metabolism , Benzeneacetamides/chemical synthesis , Benzeneacetamides/metabolism , Biphenyl Compounds/chemical synthesis , Biphenyl Compounds/metabolism , Biphenyl Compounds/pharmacology , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/metabolism , Humans , Hydroxamic Acids/chemical synthesis , Hydroxamic Acids/metabolism , Molecular Docking Simulation , Molecular Structure , Protein Binding , Structure-Activity Relationship , THP-1 Cells
2.
J Chromatogr A ; 1588: 127-136, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30658911

ABSTRACT

In this work, inverse supercritical fluid chromatography was applied to characterize the surface of four silica materials (three commercial Kromasils and one silica aerogel) from chromatographic retention data. Retention factors at various pressures (150-300 bar), temperatures (25-60 °C) and modifier concentrations (5-20 vol.% methanol in CO2) for a set of representative 17 solutes were correlated with the solute properties by the linear solvation energy relationships (LSER). Two types of the LSER models were identified based on different criteria. Firstly, a generally valid model with two descriptors concerning dipolarity/polarizability and solute hydrogen-bonding acceptor ability was constructed. Secondly, a group of specific models for each particular silica material was proposed. According to the statistical analysis of the modeling results, the acid-basic interactions were demonstrated to have a major contribution to the retention for all studied silicas. The intensity of these interactions decreases with increasing methanol concentration in the mobile phase, possibly due to the mixed mechanism of competitive adsorption of the modifier on silanol groups and modification of mobile phase property. Moreover, retention factors measured under constant conditions (p, T, methanol concentration) for a pair of the materials were found to be proportional in logarithmic scale implying the transferability of the adsorption free energies and the adsorption constants across four studied silica materials.


Subject(s)
Carbon Dioxide/chemistry , Chromatography, Supercritical Fluid , Methanol/chemistry , Silicon Dioxide/chemistry , Adsorption , Hydrogen Bonding , Silanes/chemistry , Solutions , Temperature
3.
J Biol Chem ; 288(35): 25362-25374, 2013 Aug 30.
Article in English | MEDLINE | ID: mdl-23853092

ABSTRACT

Broad-spectrum inhibitors of histone deacetylases (HDACs) constrain Toll-like receptor (TLR)-inducible production of key proinflammatory mediators. Here we investigated HDAC-dependent inflammatory responses in mouse macrophages. Of the classical Hdacs, Hdac7 was expressed at elevated levels in inflammatory macrophages (thioglycollate-elicited peritoneal macrophages) as compared with bone marrow-derived macrophages and the RAW264 cell line. Overexpression of a specific, alternatively spliced isoform of Hdac7 lacking the N-terminal 22 amino acids (Hdac7-u), but not the Refseq Hdac7 (Hdac7-s), promoted LPS-inducible expression of Hdac-dependent genes (Edn1, Il-12p40, and Il-6) in RAW264 cells. A novel class IIa-selective HDAC inhibitor reduced recombinant human HDAC7 enzyme activity as well as TLR-induced production of inflammatory mediators in thioglycollate-elicited peritoneal macrophages. Both LPS and Hdac7-u up-regulated the activity of the Edn1 promoter in an HDAC-dependent fashion in RAW264 cells. A hypoxia-inducible factor (HIF) 1 binding site in this promoter was required for HDAC-dependent TLR-inducible promoter activity and for Hdac7- and HIF-1α-mediated trans-activation. Coimmunoprecipitation assays showed that both Hdac7-u and Hdac7-s interacted with HIF-1α, whereas only Hdac7-s interacted with the transcriptional repressor CtBP1. Thus, Hdac7-u positively regulates HIF-1α-dependent TLR signaling in macrophages, whereas an interaction with CtBP1 likely prevents Hdac7-s from exerting this effect. Hdac7 may represent a potential inflammatory disease target.


Subject(s)
Gene Expression Regulation , Histone Deacetylases/metabolism , Macrophages/metabolism , Toll-Like Receptor 4/metabolism , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Animals , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , HEK293 Cells , Histone Deacetylases/genetics , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Lipopolysaccharides/pharmacology , Macrophages/pathology , Mice , Signal Transduction/drug effects , Signal Transduction/genetics , Toll-Like Receptor 4/agonists , Toll-Like Receptor 4/genetics
SELECTION OF CITATIONS
SEARCH DETAIL