Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 70, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38167542

ABSTRACT

Chemotherapy is a powerful means of cancer treatment but its efficacy is compromised by the emergence of multidrug resistance (MDR), mainly linked to the efflux transporter ABCB1/P-glycoprotein (P-gp). Based on the chemical structure of betulin, identified in our previous work as an effective modulator of the P-gp function, a series of analogs were designed, synthesized and evaluated as a source of novel inhibitors. Compounds 6g and 6i inhibited rhodamine 123 efflux in the P-gp overexpressed leukemia cells, K562/Dox, at concentrations of 0.19 µM and 0.39 µM, respectively, and increased the intracellular accumulation of doxorubicin at the submicromolar concentration of 0.098 µM. Compounds 6g and 6i were able to restore the sensitivity of K562/Dox to Dox at 0.024 µM and 0.19 µM, respectively. Structure-activity relationship analysis and molecular modeling revealed important information about the structural features conferring activity. All the active compounds fitted in a specific region involving mainly transmembrane helices (TMH) 4-6 from one homologous half and TMH 7 and 12 from the other, also showing close contacts with TMH 6 and 12. Compounds that bound preferentially to another region were inactive, regardless of their free energy of binding. It should be noted that compounds 6g and 6i were devoid of toxic effects against peripheral blood mononuclear normal cells and erythrocytes. The data obtained indicates that both compounds might be proposed as scaffolds for obtaining promising P-gp inhibitors for overcoming MDR.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1 , Antineoplastic Agents , Humans , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Leukocytes, Mononuclear/metabolism , Drug Resistance, Neoplasm , K562 Cells , ATP Binding Cassette Transporter, Subfamily B/metabolism , Doxorubicin/pharmacology , Doxorubicin/metabolism
2.
Front Pharmacol ; 13: 1007790, 2022.
Article in English | MEDLINE | ID: mdl-36313304

ABSTRACT

Background: Tumor angiogenesis is considered as a crucial pathologic feature of cancer with a key role in multidrug resistance (MDR). Adverse effects of the currently available drugs and the development of resistance to these remain as the hardest obstacles to defeat. Objetive: This work explores flora from Argentina as a source of new chemical entities with antiangiogenic activity. Methods: Tube formation assay using bovine aortic endothelial cells (BAECs) was the experiment of choice to assess antiangiogenic activity. The effect of the pure compound in cell invasiveness was investigated through the trans-well migration assay. The inhibitory effect of the pure compound on VEGFR-2 and PKC isozymes α and ß2 activation was studied by molecular and massive dynamic simulations. Cytotoxicity on peripheral blood mononuclear cells and erythrocyte cells was evaluated by means of MTT and hemolysis assay, respectively. In silico prediction of pharmacological properties (ADME) and evaluation of drug-likeness features were performed using the SwissADME online tool. Results: Among the plants screened, T. minuta, showed an outstanding effect with an IC50 of 33.6 ± 3.4 µg/ml. Bio-guided isolation yielded the terthiophene α-terthienylmethanol as its active metabolite. This compound inhibited VEGF-induced tube formation with an IC50 of 2.7 ± 0.4 µM and significantly impaired the invasiveness of bovine aortic endothelial cells (BAECs) as well as of the highly aggressive breast cancer cells, MDA-MB-231, when tested at 10 µM. Direct VEGFR-2 and PKC inhibition were both explored by means of massive molecular dynamics simulations. The results obtained validated the inhibitory effect on protein kinase C (PKC) isozymes α and ß2 as the main mechanism underlying its antiangiogenic activity. α-terthienylmethanol showed no evidence of toxicity against peripheral blood mononuclear and erythrocyte cells. Conclusion: These findings support this thiophene as a promising antiangiogenic phytochemical to fight against several types of cancer mainly those with MDR phenotype.

3.
Sci Rep ; 11(1): 16856, 2021 08 19.
Article in English | MEDLINE | ID: mdl-34413359

ABSTRACT

P-gp-associated multidrug resistance is a major impediment to the success of chemotherapy. With the aim of finding non-toxic and effective P-gp inhibitors, we investigated a panel of quinolin-2-one-pyrimidine hybrids. Among the active compounds, two of them significantly increased intracellular doxorubicin and rhodamine 123 accumulation by inhibiting the efflux mediated by P-gp and restored doxorubicin toxicity at nanomolar range. Structure-activity relationships showed that the number of methoxy groups, an optimal length of the molecule in its extended conformation, and at least one flexible methylene group bridging the quinolinone to the moiety bearing the pyrimidine favored the inhibitory potency of P-gp. The best compounds showed a similar binding pattern and interactions to those of doxorubicin and tariquidar, as revealed by MD and hybrid QM/MM simulations performed with the recent experimental structure of P-gp co-crystallized with paclitaxel. Analysis of the molecular interactions stabilizing the different molecular complexes determined by MD and QTAIM showed that binding to key residues from TMH 4-7 and 12 is required for inhibition.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Drug Resistance, Multiple/drug effects , Pyrimidines/pharmacology , Quinolones/pharmacology , Cell Death/drug effects , Humans , K562 Cells , Molecular Dynamics Simulation , Protein Transport/drug effects , Pyrimidines/chemistry , Pyrimidines/toxicity , Quinolones/chemistry , Quinolones/toxicity , Rhodamine 123/metabolism , Structure-Activity Relationship , Thermodynamics
4.
Pharmacol Res ; 170: 105751, 2021 08.
Article in English | MEDLINE | ID: mdl-34197911

ABSTRACT

Duchenne Muscular Dystrophy (DMD) is a rare disorder characterized by progressive muscle wasting, weakness, and premature death. Remarkable progress has been made in genetic approaches, restoring dystrophin, or its function. However, the targeting of secondary pathological mechanisms, such as increasing muscle blood flow or stopping fibrosis, remains important to improve the therapeutic benefits, that depend on tackling both the genetic disease and the downstream consequences. Mitochondrial dysfunctions are one of the earliest deficits in DMD, arise from multiple cellular stressors and result in less than 50% of ATP content in dystrophic muscles. Here we establish that there are two temporally distinct phases of mitochondrial damage with depletion of mitochondrial mass at early stages and an accumulation of dysfunctional mitochondria at later stages, leading to a different oxidative fibers pattern, in young and adult mdx mice. We also observe a progressive mitochondrial biogenesis impairment associated with increased deacetylation of peroxisome proliferator-activated receptor-gamma coactivator 1 α (PGC-1α) promoter. Such histone deacetylation is inhibited by givinostat that positively modifies the epigenetic profile of PGC-1α promoter, sustaining mitochondrial biogenesis and oxidative fiber type switch. We, therefore, demonstrate that givinostat exerts relevant effects at mitochondrial level, acting as a metabolic remodeling agent capable of efficiently promoting mitochondrial biogenesis in dystrophic muscle.


Subject(s)
Carbamates/pharmacology , Energy Metabolism/drug effects , Histone Deacetylase Inhibitors/pharmacology , Mitochondria, Muscle/drug effects , Muscle, Skeletal/drug effects , Muscular Dystrophy, Duchenne/drug therapy , Organelle Biogenesis , Acetylation , Animals , Disease Models, Animal , Epigenesis, Genetic , Mice, Inbred mdx , Mitochondria, Muscle/metabolism , Mitochondria, Muscle/pathology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Promoter Regions, Genetic
5.
Food Chem Toxicol ; 147: 111922, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33321149

ABSTRACT

Overexpression of P-glycoprotein (P-gp), which is linked to multidrug resistance (MDR), is one of the underlying obstacles to the success of chemotherapy as it reduces the efficacy of anticancer drugs and the side effects of these increase as a result of any increased dose to achieve the therapeutic effect. To identify agents with P-gp inhibitory properties, ethanol extracts from 80 plants were screened for their ability to increase intracellular doxorubicin-associated fluorescence, and the extract of Ligaria cuneifolia was found to be the most effective. Its bioassay-guided isolation yielded the pentacyclic triterpene betulin as active agent. This efficiently inhibited P-gp mediated efflux, as demonstrated by the enhancement of the intracellular accumulation of doxorubicin and rhodamine 123 from 1.56 µM in the P-gp overexpressing MDR leukemia cell, Lucena 1. Betulin was also able to render Lucena 1 sensitive to Dox from 0.39 µM. The docking studies revealed that betulin tightly binds to a key region of the TMDs, with a binding mode overlapping one main site of doxorubicin and, more interestingly, emulating the same contacts as tariquidar, as revealed by the per-residue energetic analysis from molecular dynamics simulations. MTT assay using peripheral blood mononuclear cells and hemolysis assay showed that betulin is devoid of toxicity. These findings provide important evidence that betulin may be a safe and promising entity to be further investigated to develop agents able to overcome P-gp-mediated MDR, resulting in a more effective and less toxic chemotherapy.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B/metabolism , Leukemia/drug therapy , Loranthaceae/chemistry , Plant Extracts/pharmacology , Triterpenes/pharmacology , ATP Binding Cassette Transporter, Subfamily B/genetics , Antibiotics, Antineoplastic/metabolism , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Cell Line, Tumor , Doxorubicin/metabolism , Drug Resistance, Neoplasm , Fluorescent Dyes/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Humans , Molecular Structure , Plant Extracts/chemistry , Rhodamine 123/metabolism , Triterpenes/chemistry
6.
Rev. imagem ; 7(3): 91-6, jul.-set. 1985. ilus, tab
Article in Portuguese | LILACS | ID: lil-32191

ABSTRACT

Foram analisados retro e prospectivamente de 03/05/79 a 25/10/84, 471 pacientes que apresentavam aumento uterino ou alteraçöes texturais significantes do miométrio no estudo ecográfico da pelve feminina, tendo sido obtida confirmaçäo cirúrgica e anátomo-patológica em 249 casos. Dentre estes, 41 foram confirmados como sendo adenomiose. Os aspectos ecográficos da adenomiose foram descritos pela primeira vez e divididos em 5 tipos morfológicos distintos. Os tipos I e V, säo inespecíficos e indistingüíveis de outras etiologias que promovem aumento uterino (mioma, hiperplasia uterina, estímulo hormonal, congestäo pélvica crônica, etc). Já os tipos II, III e IV säo fortemente sugestivos de adenomiose com verdadeiro positivo que variou de 90 a 100%


Subject(s)
Adult , Humans , Male , Endometriosis/diagnosis , Ultrasonography , Uterine Neoplasms/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL