Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 199: 702-10, 2016 May 15.
Article in English | MEDLINE | ID: mdl-26776027

ABSTRACT

The nutritional composition of ten leafy vegetables (chicory, green lettuce, lamb's lettuce, mizuna, red chard, red lettuce, rocket, spinach, Swiss chard, and tatsoi) and quality traits of the selected leafy vegetables in relation to the light intensity (low and high Photosynthetically Active Radiation; PAR) at time of harvest were determined. Irrespective of the light intensity at time of harvest, the highest leaf dry matter (DM), proteins, nitrate, P, K and Ca contents were observed in rocket followed by mizuna. The highest lipophilic antioxidant activity (LAA) was recorded in red lettuce and rocket, whereas ascorbic acid (AA) and total phenolic (TP) contents of red lettuce were higher compared to the other leafy vegetables. When leafy vegetables were harvested at low as opposed to high PAR, the leaf content was higher in DM, protein, K, Ca and Mg, hydrophilic antioxidant activity (HAA), and LAA by 12.5%, 10.0%, 12.6%, 23.7%, 14.1%, 11.9%, and 18.5%, respectively. The highest values in TP for chicory, green lettuce, lamb's lettuce, mizuna, red chard, and red lettuce, were observed under high PAR.


Subject(s)
Nutritive Value , Plant Leaves/chemistry , Vegetables/chemistry , Light , Nitrates/analysis , Phenols/analysis
2.
Front Plant Sci ; 6: 888, 2015.
Article in English | MEDLINE | ID: mdl-26579144

ABSTRACT

Soybean is traditionally grown in soil, where root symbiosis with Bradyrhizobium japonicum can supply nitrogen (N), by means of bacterial fixation of atmospheric N2. Nitrogen fertilizers inhibit N-fixing bacteria. However, urea is profitably used in soybean cultivation in soil, where urease enzymes of telluric microbes catalyze the hydrolysis to ammonium, which has a lighter inhibitory effect compared to nitrate. Previous researches demonstrated that soybean can be grown hydroponically with recirculating complete nitrate-based nutrient solutions. In Space, urea derived from crew urine could be used as N source, with positive effects in resource procurement and waste recycling. However, whether the plants are able to use urea as the sole source of N and its effect on root symbiosis with B. japonicum is still unclear in hydroponics. We compared the effect of two N sources, nitrate and urea, on plant growth and physiology, and seed yield and quality of soybean grown in closed-loop Nutrient Film Technique (NFT) in growth chamber, with or without inoculation with B. japonicum. Urea limited plant growth and seed yield compared to nitrate by determining nutrient deficiency, due to its low utilization efficiency in the early developmental stages, and reduced nutrients uptake (K, Ca, and Mg) throughout the whole growing cycle. Root inoculation with B. japonicum did not improve plant performance, regardless of the N source. Specifically, nodulation increased under fertigation with urea compared to nitrate, but this effect did not result in higher leaf N content and better biomass and seed production. Urea was not suitable as sole N source for soybean in closed-loop NFT. However, the ability to use urea increased from young to adult plants, suggesting the possibility to apply it during reproductive phase or in combination with nitrate in earlier developmental stages. Root symbiosis did not contribute significantly to N nutrition and did not enhance the plant ability to use urea, possibly because of ineffective infection process and nodule functioning in hydroponics.

3.
J Agric Food Chem ; 61(33): 7960-8, 2013 Aug 21.
Article in English | MEDLINE | ID: mdl-23865390

ABSTRACT

In this paper artichoke phenolic pattern was characterized using an Orbitrap Exactive Mass Spectrometer at high mass accuracy and conventional HPLC MS/MS. Twenty four phenolic acids and 40 flavonoids were identified, many of them not previously reported in artichoke. Variations in phenolic compounds were investigated in relation to mycorrhization: results showed that inoculation with mycorrhizae greatly influences metabolite profile proving to be a good strategy to enhance the biosynthesis of secondary metabolites in this plant. This practice also caused a different distribution of the main phenolic compounds within head parts. Both steaming and microwaving cooking treatments caused an increase in antioxidant activity: the lower the initial concentration the higher the effect. A similar trend was observed looking at the phenolic compounds concentration: it increased because of cooking treatments the lower the initial content, the highest the increase. Steamed artichoke showed higher phenols content than microwaved ones.


Subject(s)
Agricultural Inoculants/physiology , Agriculture/methods , Cooking/methods , Cynara scolymus/chemistry , Cynara scolymus/microbiology , Mycorrhizae/physiology , Polyphenols/metabolism , Antioxidants/chemistry , Antioxidants/metabolism , Cynara scolymus/metabolism , Fungi/physiology , Metabolome , Plant Leaves/chemistry , Plant Leaves/metabolism , Polyphenols/chemistry
4.
J Plant Physiol ; 169(17): 1737-46, 2012 Nov 15.
Article in English | MEDLINE | ID: mdl-22840325

ABSTRACT

Increasing salinity tolerance and water-use efficiency in crop plants are two major challenges that agriculture must face in the next decades. Many physiological mechanisms and molecular components mediating crop response to environmental stresses have been identified. However, the functional inter-links between stress adaptation responses have not been completely understood. Using two basil cultivars (Napoletano and Genovese) with contrasting ability to respond to salt stress, here we demonstrate that reduced stomatal density, high ascorbate level and polyphenol oxidase (PPO) activity coordinately contribute to improve basil adaptation and water use efficiency (WUE) in saline environment. The constitutively reduced stomatal density was associated with a "delayed" accumulation of stress molecules (and growth inhibiting signals) such as abscisic acid (ABA) and proline, in the more tolerant Genovese. Leaf volatile profiling also revealed cultivar-specific patterns, which may suggest a role for the volatile phenylpropanoid eugenol and monoterpenes in conferring stress tolerance via antioxidant and signalling functions.


Subject(s)
Ocimum basilicum/physiology , Salt Tolerance , Sodium Chloride/pharmacology , Water/metabolism , Ocimum basilicum/genetics , Ocimum basilicum/growth & development , Plant Leaves/genetics , Plant Leaves/physiology , Plant Stomata/physiology , Stress, Physiological
5.
Funct Plant Biol ; 39(8): 689-698, 2012 Sep.
Article in English | MEDLINE | ID: mdl-32480820

ABSTRACT

The effects of short- and long-term salinisation were studied by comparing tomato growth on a soil exposed to one-season salinisation (short term) vs growth on a soil exposed to >20 years salinisation (long term). Remarkable differences were associated to substantial modifications of the soil physical-chemical characteristics in the root zone, including deteriorated structure, reduced infiltration properties and increased pH. Fresh yield, fruit number and fruit weight were similarly affected by short- and long-term salinisation. In contrast, the marketable yield was significantly lower in the long-term salinised soil - a response that was also associated to nutritional imbalance (mainly referred to P and K). As reported for plants growing under oxygen deprivation stress, the antioxidant capacity of the water soluble fraction of salinised tomato fruits was enhanced by short-term salinisation, also. Overall, long-term salinisation may cause physiological imbalances and yield reductions that cannot be solely attributed to hyperosmotic stress and ionic toxicity. Therefore, the ability of plants to cope with nutritional deficiency and withstand high pH and anoxia may be important traits that should be considered to improve plant tolerance to long-term salinised soils.

6.
Physiol Plant ; 138(1): 10-21, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19843237

ABSTRACT

Plants have evolved complex mechanisms to perceive environmental cues and develop appropriate and coordinated responses to abiotic and biotic stresses. Considerable progress has been made towards a better understanding of the molecular mechanisms of plant response to a single stress. However, the existence of cross-tolerance to different stressors has proved to have great relevance in the control and regulation of organismal adaptation. Evidence for the involvement of the signal peptide systemin and jasmonic acid in wound-induced salt stress adaptation in tomato has been provided. To further unravel the functional link between plant responses to salt stress and mechanical damage, transgenic tomato (Lycopersicon esculentum Mill.) plants constitutively expressing the prosystemin cDNA have been exposed to a moderate salt stress. Prosystemin over-expression caused a reduction in stomatal conductance. However, in response to salt stress, prosystemin transgenic plants maintained a higher stomatal conductance compared with the wild-type control. Leaf concentrations of abscissic acid (ABA) and proline were lower in stressed transgenic plants compared with their wild-type control, implying that either the former perceived a less stressful environment or they adapted more efficiently to it. Consistently, under salt stress, transgenic plants produced a higher biomass, indicating that a constitutive activation of wound responses is advantageous in saline environment. Comparative gene expression profiling of stress-induced genes suggested that the partial stomatal closure was not mediated by ABA and/or components of the ABA signal transduction pathway. Possible cross-talks between genes involved in wounding and osmotic stress adaptation pathways in tomato are discussed.


Subject(s)
Peptides/genetics , Salt-Tolerant Plants/physiology , Solanum lycopersicum/physiology , Abscisic Acid/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Genes, Plant , Solanum lycopersicum/genetics , Solanum lycopersicum/growth & development , Plant Stomata/physiology , Plant Transpiration , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Plants, Genetically Modified/physiology , Proline/metabolism , RNA, Plant/genetics , Salt-Tolerant Plants/genetics , Salt-Tolerant Plants/growth & development , Sodium Chloride/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...