Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 120
Filter
1.
Ageing Res Rev ; : 102533, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39368666

ABSTRACT

Obesity is one of the most prevalent and increasing metabolic disorders and is considered one of the twelve risk factors for dementia. Numerous studies have demonstrated that obesity induces pathophysiological changes leading to cognitive decline; however, the underlying molecular mechanisms are yet to be fully elucidated. Various biochemical processes, including chronic inflammation, oxidative stress, insulin resistance, dysregulation of lipid metabolism, disruption of the blood-brain barrier, and the release of adipokines, have been reported to contribute to the accumulation of senescent neurons during obesity. These senescent cells dysregulate neuronal health and function by exhibiting a senescence-associated secretory phenotype, inducing neuronal inflammation, deregulating cellular homeostasis, causing mitochondrial dysfunction, and promoting microglial infiltration. These factors act as major risks for the occurrence of neurodegenerative diseases and cognitive decline. This review aims to focus on how obesity upregulates neuronal senescence and explores both pharmacological and non-pharmacological interventions for preventing cognitive impairments, thus offering new insights into potential therapeutic strategies.

2.
Ageing Res Rev ; 99: 102405, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38971321

ABSTRACT

Diabetes mellitus, a metabolic condition affecting around 537 million individuals worldwide, poses significant challenges, particularly among the elderly population. The etiopathogenesis of type 2 diabetes (T2D) depends on a combination of the effects driven by advancing age, genetic background, and lifestyle habits, e.g. overnutrition. These factors influence the development of T2D differently in men and women, with an obvious sexual dimorphism possibly underlying the diverse clinical features of the disease in different sexes. More recently, environmental pollution, estimated to cause 9 million deaths every year, is emerging as a novel risk factor for the development of T2D. Indeed, exposure to atmospheric pollutants such as PM2.5, O3, NO2, and Persistent Organic Pollutants (POP)s, along with their combination and bioaccumulation, is associated with the development of T2D and obesity, with a 15 % excess risk in case of exposure to very high levels of PM2.5. Similar data are available for plasticizer molecules, e.g. bisphenol A and phthalates, emerging endocrine-disrupting chemicals. Even though causality is still debated at this stage, preclinical evidence sustains the ability of multiple pollutants to affect pancreatic function, promote insulin resistance, and alter lipid metabolism, possibly contributing to T2D onset and progression. In addition, preclinical findings suggest a possible role also for plastic itself in the development of T2D. Indeed, pioneeristic studies evidenced that micro- or nanoplastics (MNP)s, particles in the micro- or nano- range, promote cellular damage, senescence, inflammation, and metabolic disturbances, leading to insulin resistance and impaired glucose metabolism in animal and/or in vitro models. Here we synthesize recent knowledge relative to the association between air-related or plastic-derived pollutants and the incidence of T2D, discussing also the possible mechanistic links suggested by the available literature. We then anticipate the need for future studies in the field of candidate therapeutic strategies limiting pollution-induced damage in preclinical models, such as SGLT-2 inhibitors. We finally postulate that future guidelines for T2D prevention should consider pollution and sex an additional risk factors to limit the diabetes pandemic.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/etiology , Diabetes Mellitus, Type 2/metabolism , Humans , Risk Factors , Female , Male , Environmental Pollution/adverse effects , Animals , Environmental Exposure/adverse effects , Sex Factors , Sex Characteristics
3.
Cardiovasc Diabetol ; 23(1): 242, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987789

ABSTRACT

Tirzepatide is a new drug targeting glucagon-like peptide 1(GLP1) and gastric inhibitory polypeptide (GIP) receptors. This drug has demonstrated great potential in improving the clinical outcomes of patients with type 2 diabetes. It can lead to weight loss, better glycemic control, and reduced cardiometabolic risk factors. GLP1 receptor agonists have been proven effective antidiabetic medications with possible cardiovascular benefits. Even though they have been proven to reduce the risk of major adverse cardiovascular events, their effectiveness in treating heart failure is unknown. Unlike traditional GLP1 receptor agonists, tirzepatide is more selective for the GIP receptor, resulting in a more balanced activation of these receptors. This review article discusses the possible mechanisms tirzepatide may use to improve cardiovascular health. That includes the anti-inflammatory effect, the ability to reduce cell death and promote autophagy, and also its indirect effects through blood pressure, obesity, and glucose/lipid metabolism. Additionally, tirzepatide may benefit atherosclerosis and lower the risk of major adverse cardiac events. Currently, clinical trials are underway to evaluate the safety and efficacy of tirzepatide in patients with heart failure. Overall, tirzepatide's dual agonism of GLP1 and GIP receptors appears to provide encouraging cardiovascular benefits beyond glycemic control, offering a potential new therapeutic option for treating cardiovascular diseases and heart failure.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Glucagon-Like Peptide-1 Receptor , Hypoglycemic Agents , Incretins , Humans , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/prevention & control , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/blood , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/adverse effects , Hypoglycemic Agents/pharmacology , Animals , Treatment Outcome , Incretins/therapeutic use , Incretins/adverse effects , Receptors, Gastrointestinal Hormone/agonists , Receptors, Gastrointestinal Hormone/metabolism , Signal Transduction/drug effects , Blood Glucose/drug effects , Blood Glucose/metabolism , Cardiovascular System/drug effects , Cardiovascular System/metabolism , Cardiovascular System/physiopathology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/adverse effects , Biomarkers/blood , Risk Assessment , Glucagon-Like Peptide-2 Receptor , Gastric Inhibitory Polypeptide
4.
J Clin Med ; 13(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38930095

ABSTRACT

Atrial fibrillation (AF) has been associated with higher morbidity and mortality rates, especially in older patients. Subclinical atrial fibrillation (SCAF) is defined as the presence of atrial high-rate episodes (AHREs) > 190 bpm for 10 consecutive beats > 6 min and <24 h, as detected by cardiac implanted electronic devices (CIEDs). The selection of eligible patients for anticoagulation therapy among elderly individuals with AHREs detected through CIEDs remains a contentious issue. The meta-analysis of ARTESiA and NOAH-AFNET 6 clinical trials revealed that taking Edoxaban or Apixaban as oral anticoagulation therapy can reduce the risk of stroke by approximately 32% while increasing the risk of major bleeding by approximately 62%. However, it is still unclear which are, among patients with SCAF, those who can take the highest net clinical benefit from anticoagulant therapy. The present review summarizes the current evidence on this intriguing issue and suggests strategies to try to better stratify the risk of stroke and systemic embolism in patients with AHREs. We propose incorporating some parameters including chronic kidney disease (CKD), obesity, enlarged left atrial volume, the efficacy in blood pressure management, and frailty into the traditional CHA2DS2-VASc score. Future trials will be needed to verify the clinical usefulness of the proposed prognostic score mainly in the view of a personalized therapeutic approach in patients with SCAF.

5.
Cardiovasc Diabetol ; 23(1): 112, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38555463

ABSTRACT

BACKGROUND: Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are effective antidiabetic drugs with potential cardiovascular benefits. Despite their well-established role in reducing the risk of major adverse cardiovascular events (MACE), their impact on heart failure (HF) remains unclear. Therefore, our study examined the cardioprotective effects of tirzepatide (TZT), a novel glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) receptor agonist. METHODS: A three-steps approach was designed: (i) Meta-analysis investigation with the primary objective of assessing major adverse cardiovascular events (MACE) occurrence from major randomized clinical trials.; (ii) TZT effects on a human cardiac AC16 cell line exposed to normal (5 mM) and high (33 mM) glucose concentrations for 7 days. The gene expression and protein levels of primary markers related to cardiac fibrosis, hypertrophy, and calcium modulation were evaluated. (iii) In silico data from bioinformatic analyses for generating an interaction map that delineates the potential mechanism of action of TZT. RESULTS: Meta-analysis showed a reduced risk for MACE events by TZT therapy (HR was 0.59 (95% CI 0.40-0.79, Heterogeneity: r2 = 0.01, I2 = 23.45%, H2 = 1.31). In the human AC16 cardiac cell line treatment with 100 nM TZT contrasted high glucose (HG) levels increase in the expression of markers associated with fibrosis, hypertrophy, and cell death (p < 0.05 for all investigated markers). Bioinformatics analysis confirmed the interaction between the analyzed markers and the associated pathways found in AC16 cells by which TZT affects apoptosis, fibrosis, and contractility, thus reducing the risk of heart failure. CONCLUSION: Our findings indicate that TZT has beneficial effects on cardiac cells by positively modulating cardiomyocyte death, fibrosis, and hypertrophy in the presence of high glucose concentrations. This suggests that TZT may reduce the risk of diabetes-related cardiac damage, highlighting its potential as a therapeutic option for heart failure management clinical trials. Our study strongly supports the rationale behind the clinical trials currently underway, the results of which will be further investigated to gain insights into the cardiovascular safety and efficacy of TZT.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetes Mellitus , Gastric Inhibitory Polypeptide , Glucagon-Like Peptide-2 Receptor , Heart Failure , Humans , Heart Failure/prevention & control , Diabetes Mellitus/diagnosis , Diabetes Mellitus/drug therapy , Hypertrophy , Hypoglycemic Agents/pharmacology , Myocytes, Cardiac , Fibrosis , Glucose , Glucagon-Like Peptide-1 Receptor
6.
Ageing Res Rev ; 96: 102257, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38437884

ABSTRACT

Alzheimer's disease (AD) is a rapidly growing global concern due to a consistent rise of the prevalence of dementia which is mainly caused by the aging population worldwide. An early diagnosis of AD remains important as interventions are plausibly more effective when started at the earliest stages. Recent developments in clinical research have focused on the use of blood-based biomarkers for improve diagnosis/prognosis of neurodegenerative diseases, particularly AD. Unlike invasive cerebrospinal fluid tests, circulating biomarkers are less invasive and will become increasingly cheaper and simple to use in larger number of patients with mild symptoms or at risk of dementia. In addition to AD-specific markers, there is growing interest in biomarkers of inflammaging/neuro-inflammaging, an age-related chronic low-grade inflammatory condition increasingly recognized as one of the main risk factor for almost all age-related diseases, including AD. Several inflammatory markers have been associated with cognitive performance and AD development and progression. The presence of senescent cells, a key driver of inflammaging, has also been linked to AD pathogenesis, and senolytic therapy is emerging as a potential treatment strategy. Here, we describe blood-based biomarkers clinically relevant for AD diagnosis/prognosis and biomarkers of inflammaging associated with AD. Through a systematic review approach, we propose that a combination of circulating neurodegeneration and inflammatory biomarkers may contribute to improving early diagnosis and prognosis, as well as providing valuable insights into the trajectory of cognitive decline and dementia in the aging population.


Subject(s)
Aging , Alzheimer Disease , Biomarkers , Inflammation , Humans , Alzheimer Disease/blood , Alzheimer Disease/diagnosis , Biomarkers/blood , Inflammation/blood , Inflammation/diagnosis , Dementia/diagnosis , Dementia/blood
7.
Pharmacol Res ; 203: 107146, 2024 May.
Article in English | MEDLINE | ID: mdl-38493928

ABSTRACT

Patients with chronic kidney disease (CKD) often experience mild cognitive impairment and other neurocognitive disorders. Studies have shown that erythropoietin (EPO) and its receptor have neuroprotective effects in cell and animal models of nervous system disorders. Recombinant human EPO (rHuEPO), commonly used to treat anemia in CKD patients, could be a neuroprotective agent. In this systematic review, we aimed to assess the published studies investigating the cognitive benefits of rHuEPO treatment in individuals with reduced kidney function. We comprehensively searched Pubmed, Cochrane Library, Scopus, and Web of Science databases from 1990 to 2023. After selection, 24 studies were analyzed, considering study design, sample size, participant characteristics, intervention, and main findings. The collective results of these studies in CKD patients indicated that rHuEPO enhances brain function, improves performance on neuropsychological tests, and positively affects electroencephalography measurements. These findings suggest that rHuEPO could be a promising neuroprotective agent for managing CKD-related cognitive impairment.


Subject(s)
Cognitive Dysfunction , Erythropoietin , Neuroprotective Agents , Renal Insufficiency, Chronic , Humans , Erythropoietin/therapeutic use , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/pharmacology , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/psychology , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Animals , Recombinant Proteins/therapeutic use , Brain/drug effects , Brain/metabolism , Brain/physiopathology , Cognition/drug effects
8.
Eur J Heart Fail ; 26(2): 471-482, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38247224

ABSTRACT

AIM: Cardiac remodelling plays a major role in the prognosis of patients with aortic stenosis (AS) and could impact the benefits of aortic valve replacement. Our study aimed to evaluate the expression of sodium-glucose cotransporter 2 (SGLT2) gene and protein in patients with severe AS stratified in high gradient (HG) and low flow-low gradient (LF-LG) AS and its association with cardiac functional impairments. METHODS AND RESULTS: Gene expression and protein levels of main biomarkers of cardiac fibrosis (galectin-3, sST2, serpin-4, procollagen type I amino-terminal peptide, procollagen type I carboxy-terminal propeptide, collagen, transforming growth factor [TGF]-ß), inflammation (growth differentiation factor-15, interleukin-6, nuclear factor-κB [NF-κB]), oxidative stress (superoxide dismutase 1 [SOD1] and 2 [SOD2]), and cardiac metabolism (sodium-hydrogen exchanger, peroxisome proliferator-activated receptor [PPAR]-α, PPAR-γ, glucose transporter 1 [GLUT1] and 4 [GLUT4]) were evaluated in blood samples and heart biopsies of 45 patients with AS. Our study showed SGLT2 gene and protein hyper-expression in patients with LF-LG AS, compared to controls and HG AS (p < 0.05). These differences remained significant even after adjusting for age, gender, body mass index, history of diabetes mellitus, arterial hypertension, and coronary artery disease. SGLT2 gene expression was positively correlated with: (i) TGF-ß (r = 0.72, p < 0.001) and collagen (r = 0.73, p < 0.001) as markers of fibrosis; (ii) NF-κB (r = 0.36, p < 0.01) and myocardial interleukin-6 (r = 0.68, p < 0.001) as markers of inflammation: (iii) SOD2 (r = -0.38, p < 0.006) as a marker of oxidative stress; (iv) GLUT4 (r = 0.33, p < 0.02) and PPAR-α (r = 0.36, p < 0.01) as markers of cardiac metabolism. CONCLUSION: In patients with LF-LG AS, SGLT2 gene and protein were hyper-expressed in cardiomyocytes and associated with myocardial fibrosis, inflammation, and oxidative stress.


Subject(s)
Aortic Valve Stenosis , Heart Failure , Humans , Aortic Valve Stenosis/complications , Fibrosis , Glucose , Heart Failure/complications , Inflammation , Interleukin-6 , NF-kappa B , Peroxisome Proliferator-Activated Receptors , Sodium , Sodium-Glucose Transporter 2 , Ventricular Remodeling
9.
J Transl Med ; 22(1): 114, 2024 01 29.
Article in English | MEDLINE | ID: mdl-38287296

ABSTRACT

BACKGROUND: Several evidence demonstrated that glucagon-like peptide 1 receptor agonists (GLP1-RAs) reduce the risk of dementia in type 2 diabetes patients by improving memory, learning, and overcoming cognitive impairment. In this study, we elucidated the molecular processes underlying the protective effect of Tirzepatide (TIR), a dual glucose-dependent insulinotropic polypeptide receptor agonist (GIP-RA)/ GLP-1RA, against learning and memory disorders. METHODS: We investigated the effects of TIR on markers of neuronal growth (CREB and BDNF), apoptosis (BAX/Bcl2 ratio) differentiation (pAkt, MAP2, GAP43, and AGBL4), and insulin resistance (GLUT1, GLUT4, GLUT3 and SORBS1) in a neuroblastoma cell line (SHSY5Y) exposed to normal and high glucose concentration. The potential role on DNA methylation of genes involved in neuroprotection and epigenetic modulators of neuronal growth (miRNA 34a), apoptosis (miRNA 212), and differentiation (miRNA 29c) was also investigated. The cell proliferation was detected by measuring Ki-67 through flow cytometry. The data were analysed by SPSS IBM Version 23 or GraphPad Prism 7.0 software and expressed as the means ± SEM. Differences between the mean values were considered significant at a p-value of < 0.05. GraphPad Prism software was used for drawing figures. RESULTS: For the first time, it was highlighted: (a) the role of TIR in the activation of the pAkt/CREB/BDNF pathway and the downstream signaling cascade; (b) TIR efficacy in neuroprotection; (c) TIR counteracting of hyperglycemia and insulin resistance-related effects at the neuronal level. CONCLUSIONS: We demonstrated that TIR can ameliorate high glucose-induced neurodegeneration and overcome neuronal insulin resistance. Thus, this study provides new insight into the potential role of TIR in improving diabetes-related neuropathy.


Subject(s)
Diabetes Mellitus, Type 2 , Gastric Inhibitory Polypeptide , Glucagon-Like Peptide-2 Receptor , Insulin Resistance , MicroRNAs , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Insulin/metabolism , Brain-Derived Neurotrophic Factor , Blood Glucose/metabolism , Glucagon-Like Peptide-1 Receptor/agonists , Hypoglycemic Agents/pharmacology
10.
Ageing Res Rev ; 92: 102131, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37984626

ABSTRACT

Here we propose that SGLT2 inhibitors (SGLT2i), a class of drugs primarily used to treat type 2 diabetes, could also be repositioned as anti-aging senomorphic drugs (agents that prevent the extrinsic harmful effects of senescent cells). As observed for metformin, another anti-diabetic drug with established anti-aging potential, increasing evidence suggests that SGLT2i can modulate some relevant pathways associated with the aging process, such as free radical production, cellular energy regulation through AMP-activated protein kinase (AMPK), autophagy, and the activation of nuclear factor (NF)-kB/inflammasome. Some interesting pro-healthy effects were also observed on human microbiota. All these mechanisms converge on fueling a systemic proinflammatory condition called inflammaging, now recognized as the main risk factor for accelerated aging and increased risk of age-related disease development and progression. Inflammaging can be worsened by cellular senescence and immunosenescence, which contributes to the increased burden of senescent cells during aging, perpetuating the proinflammatory condition. Interestingly, increasing evidence suggested the direct effects of SGLT-2i against senescent cells, chronic activation of immune cells, and metabolic alterations induced by overnutrition (meta-inflammation). In this framework, we analyzed and discussed the multifaceted impact of SGLT2i, compared with metformin effects, as a potential anti-aging drug beyond diabetes management. Despite promising results in experimental studies, rigorous investigations with well-designed cellular and clinical investigations will need to validate SGLT2 inhibitors' anti-aging effects.


Subject(s)
Diabetes Mellitus, Type 2 , Metformin , Sodium-Glucose Transporter 2 Inhibitors , Humans , Aging , Cellular Senescence , Diabetes Mellitus, Type 2/drug therapy , Metformin/pharmacology , Metformin/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use
11.
Theranostics ; 13(14): 4872-4884, 2023.
Article in English | MEDLINE | ID: mdl-37771773

ABSTRACT

Reactive oxygen species (ROS) have emerged as essential signaling molecules regulating cell survival, death, inflammation, differentiation, growth, and immune response. Environmental factors, genetic factors, or many pathological condition such as diabetes increase the level of ROS generation by elevating the production of advanced glycation end products, reducing free radical scavengers, increasing mitochondrial oxidative stress, and by interfering with DAG-PKC-NADPH oxidase and xanthine oxidase pathways. Oxidative stress, and therefore the accumulation of intracellular ROS, determines the deregulation of several proteins and caspases, damages DNA and RNA, and interferes with normal neuronal function. Furthermore, ROS play an essential role in the polymerization, phosphorylation, and aggregation of tau and amyloid-beta, key mediators of cognitive function decline. At the neuronal level, ROS interfere with the DNA methylation pattern and various apoptotic factors related to cell death, promoting neurodegeneration. Only few drugs are able to quench ROS production in neurons. The cross-linking pathways between diabetes and dementia suggest that antidiabetic medications can potentially treat dementia. Among antidiabetic drugs, glucagon-like peptide-1 receptor agonists (GLP-1RAs) have been found to reduce ROS generation and ameliorate mitochondrial function, protein aggregation, neuroinflammation, synaptic plasticity, learning, and memory. The incretin hormone glucagon-like peptide-1 (GLP-1) is produced by the enteroendocrine L cells in the distal intestine after food ingestion. Upon interacting with its receptor (GLP-1R), it regulates blood glucose levels by inducing insulin secretion, inhibiting glucagon production, and slowing gastric emptying. No study has evidenced a specific GLP-1RA pathway that quenches ROS production. Here we summarize the effects of GLP-1RAs against ROS overproduction and discuss the putative efficacy of Exendin-4, Lixisenatide, and Liraglutide in treating dementia by decreasing ROS.


Subject(s)
Dementia , Diabetes Mellitus, Type 2 , Diabetes Mellitus , Humans , Amyloid beta-Peptides/metabolism , Dementia/drug therapy , Diabetes Mellitus/drug therapy , Diabetes Mellitus, Type 2/metabolism , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide-1 Receptor/agonists , Hypoglycemic Agents/chemistry , Oxidation-Reduction , Reactive Oxygen Species/metabolism , Transcription Factors/metabolism
12.
J Transl Med ; 21(1): 662, 2023 09 23.
Article in English | MEDLINE | ID: mdl-37742032

ABSTRACT

BACKGROUND: Sodium-glucose cotransporter 2 (SGLT2) inhibitors constitute the gold standard treatment for type 2 diabetes mellitus (T2DM). Among them, empagliflozin (EMPA) has shown beneficial effects against heart failure. Because cardiovascular diseases (mainly diabetic cardiomyopathy) are the leading cause of death in diabetic patients, the use of EMPA could be, simultaneously, cardioprotective and antidiabetic, reducing the risk of death from cardiovascular causes and decreasing the risk of hospitalization for heart failure in T2DM patients. Interestingly, recent studies have shown that EMPA has positive benefits for people with and without diabetes. This finding broadens the scope of EMPA function beyond glucose regulation alone to include a more intricate metabolic process that is, in part, still unknown. Similarly, this significantly increases the number of people with heart diseases who may be eligible for EMPA treatment. METHODS: This study aimed to clarify the metabolic effect of EMPA on the human myocardial cell model by using orthogonal metabolomics, lipidomics, and proteomics approaches. The untargeted and multivariate analysis mimicked the fasting blood sugar level of T2DM patients (hyperglycemia: HG) and in the average blood sugar range (normal glucose: NG), with and without the addition of EMPA. RESULTS: Results highlighted that EMPA was able to modulate and partially restore the levels of multiple metabolites associated with cellular stress, which were dysregulated in the HG conditions, such as nicotinamide mononucleotide, glucose-6-phosphate, lactic acid, FA 22:6 as well as nucleotide sugars and purine/pyrimidines. Additionally, EMPA regulated the levels of several lipid sub-classes, in particular dihydroceramide and triacylglycerols, which tend to accumulate in HG conditions resulting in lipotoxicity. Finally, EMPA counteracted the dysregulation of endoplasmic reticulum-derived proteins involved in cellular stress management. CONCLUSIONS: These results could suggest an effect of EMPA on different metabolic routes, tending to rescue cardiomyocyte metabolic status towards a healthy phenotype.


Subject(s)
Diabetes Mellitus, Type 2 , Heart Failure , Humans , Myocytes, Cardiac , Diabetes Mellitus, Type 2/drug therapy , Blood Glucose , Multiomics , Glucose/pharmacology
13.
Eur J Neurol ; 30(9): 2899-2911, 2023 09.
Article in English | MEDLINE | ID: mdl-37326125

ABSTRACT

BACKGROUND: Cognitive impairment is common in patients with chronic kidney disease (CKD), and early intervention may prevent the progression of this condition. METHODS: Here, we review interventions for the complications of CKD (anemia, secondary hyperparathyroidism, metabolic acidosis, harmful effects of dialysis, the accumulation of uremic toxins) and for prevention of vascular events, interventions that may potentially be protective against cognitive impairment. Furthermore, we discuss nonpharmacological and pharmacological methods to prevent cognitive impairment and/or minimize the latter's impact on CKD patients' daily lives. RESULTS: A particular attention on kidney function assessment is suggested during work-up for cognitive impairment. Different approaches are promising to reduce cognitive burden in patients with CKD but the availabe dedicated data are scarce. CONCLUSIONS: There is a need for studies assessing the effect of interventions on the cognitive function of patients with CKD.


Subject(s)
Cognition Disorders , Cognitive Dysfunction , Renal Insufficiency, Chronic , Humans , Cognitive Dysfunction/etiology , Cognitive Dysfunction/prevention & control , Cognition Disorders/etiology , Cognition Disorders/prevention & control , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/therapy , Cognition , Renal Dialysis/adverse effects
14.
Biomed Pharmacother ; 164: 114912, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37210896

ABSTRACT

BACKGROUND: Despite the available evidence showing an association between cardiac arrhythmia and Immune Checkpoint Inhibitors (ICIs), few studies have compared this risk between ICIs. OBJECTIVES: We aim to evaluate Individual Case Safety Reports (ICSRs) of ICIs-induced cardiac arrhythmias and compare the reporting frequency of cardiac arrhythmias among ICIs. METHODS: ICSRs were retrieved from the European Pharmacovigilance database (Eudravigilance). ICSRs were classified based on the ICI reported (pembrolizumab, nivolumab, atezolizumab, ipilimumab, durvalumab, avelumab, cemiplimab, and dostarlimab). If more than one ICI was reported, the ICSR was classified as a combination of ICIs. ICSRs of ICI-related arrhythmias were described and the reporting frequency of cardiac arrhythmias was assessed by applying the reporting odds ratio (ROR) and its 95 % confidence interval (95 %CI). RESULTS: A total of 1262 ICSRs were retrieved, of which 147 (11.65 %) were related to combinations of ICIs. A total of 1426 events of cardiac arrhythmias were identified. The three most reported events were atrial fibrillation, tachycardia, and cardiac arrest. Ipilimumab was associated with a reduced reporting frequency of cardiac arrhythmias compared to all other ICIs (ROR 0.71, 95 %CI 0.55-0.92; p = 0.009). Anti-PD1 was associated with a higher reporting frequency of cardiac arrhythmias than anti-CTLA4 (ROR 1.47, 95 %CI 1.14-1.90; p = 0.003). CONCLUSION: This study is the first comparing ICIs for the risk of cardiac arrhythmias. We found that ipilimumab was the only ICI associated with a reduced reporting frequency. Further high-quality studies are needed to confirm our results.


Subject(s)
Antineoplastic Agents, Immunological , Atrial Fibrillation , Humans , Immune Checkpoint Inhibitors/adverse effects , Ipilimumab , Pharmacovigilance
15.
Cardiovasc Diabetol ; 22(1): 24, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36732760

ABSTRACT

BACKGROUND: Sodium-glucose co-transporters (SGLT) inhibitors (SGLT2i) showed many beneficial effects at the cardiovascular level. Several mechanisms of action have been identified. However, no data on their capability to act via epigenetic mechanisms were reported. Therefore, this study aimed to investigate the ability of SGLT2 inhibitors (SGLT2i) to induce protective effects at the cardiovascular level by acting on DNA methylation. METHODS: To better clarify this issue, the effects of empagliflozin (EMPA) on hyperglycemia-induced epigenetic modifications were evaluated in human ventricular cardiac myoblasts AC16 exposed to hyperglycemia for 7 days. Therefore, the effects of EMPA on DNA methylation of NF-κB, SOD2, and IL-6 genes in AC16 exposed to high glucose were analyzed by pyrosequencing-based methylation analysis. Modifications of gene expression and DNA methylation of NF-κB and SOD2 were confirmed in response to a transient SGLT2 gene silencing in the same cellular model. Moreover, chromatin immunoprecipitation followed by quantitative PCR was performed to evaluate the occupancy of TET2 across the investigated regions of NF-κB and SOD2 promoters. RESULTS: Seven days of high glucose treatment induced significant demethylation in the promoter regions of NF-kB and SOD2 with a consequent high level in mRNA expression of both genes. The observed DNA demethylation was mediated by increased TET2 expression and binding to the CpGs island in the promoter regions of analyzed genes. Indeed, EMPA prevented the HG-induced demethylation changes by reducing TET2 binding to the investigated promoter region and counteracted the altered gene expression. The transient SGLT2 gene silencing prevented the DNA demethylation observed in promoter regions, thus suggesting a role of SGLT2 as a potential target of the anti-inflammatory and antioxidant effect of EMPA in cardiomyocytes. CONCLUSIONS: In conclusion, our results demonstrated that EMPA, mainly acting on SGLT2, prevented DNA methylation changes induced by high glucose and provided evidence of a new mechanism by which SGLT2i can exert cardio-beneficial effects.


Subject(s)
Hyperglycemia , Sodium-Glucose Transporter 2 Inhibitors , Humans , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , NF-kappa B/metabolism , Sodium-Glucose Transporter 2/genetics , Sodium-Glucose Transporter 2/metabolism , Benzhydryl Compounds/pharmacology , Glucose/toxicity , Epigenesis, Genetic
16.
Diabetes Res Clin Pract ; 191: 110066, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36058441

ABSTRACT

AIM: miRNA-21 is a crucial regulator of developing cardiac diseases, but its role is still controversial, and therefore it is necessary to clarify, at cardiac level, its involvement in high glucose induced-acute and chronic cardiac damage. METHODS: Human ventricular cardiac myoblasts AC16, treated and not with miRNA-21 inhibitor, were exposed to high glucose for 2 and 7 days, and the expression of damage markers were investigated. Further, cardiac energetic metabolism was evaluated by measuring both the expression of glucose transporters and lipids regulators. RESULTS: Short-term high glucose treatment induced a significant increase in miRNA-21 expression (p < 0.05) that was associated with an increase in hydrogen ion flux and energy potential dissipation without any change in energy production or increase in genes expression involved in cellular damage. miRNA-21 reduction observed (p < 0.05) at 7 days of high glucose treatment, induced the activation of damage pathways and compromised mitochondrial function (p < 0.05). CONCLUSION: In human cardiomyocytes, the abundance of miRNA-21 takes part in first defense mechanism against cardiac insult and its cardioprotective effect depends on time of exposure to injury. Moreover, miRNA-21 regulates mitochondrial respiration and the ability of cells to select the most appropriate substrate for ATP production in given environment.


Subject(s)
MicroRNAs , Myocytes, Cardiac , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/pharmacology , Apoptosis , Cell Line , Glucose/metabolism , Glucose/pharmacology , Humans , Lipids , MicroRNAs/genetics , MicroRNAs/metabolism , Myocytes, Cardiac/metabolism , Protons
17.
Pharmacol Res ; 184: 106448, 2022 10.
Article in English | MEDLINE | ID: mdl-36096423

ABSTRACT

This study aimed at investigating the SGLT2 expression in human cardiomyocytes. Human studies evaluating cardiomyocyte SGLT2s expression are limited. To better clarify this issue, SGLT2 protein expression was assessed in human hearts of diabetic and non-diabetic patients, and in AC16 human cardiomyocyte cell line. A prospective study with a follow-up of patients who underwent their first heart transplant (HTX) was performed. Explanted heart, basal (1 week after HTX), and final (48 weeks after HTX) endomyocardial biopsies (EMBs) from patients were evaluated for SGLT2 occurrence in cardiomyocyte with immunohistochemistry, immunofluorescence and SGLT2 quantization with both real-time reverse transcription-polymerase chain reaction and Western blot analysis. The immunofluorescence co-localization of SGLT2 in cardiomyocyte evidenced that an increased expression in the explanted heart from diabetic patients compared to non-diabetic (p < 0.001). In all final EMBs from diabetic patients, the expression of SGLT2 in cardiomyocyte was increased compared to non-diabetic (p < 0.01). This evidence was confirmed by Western blot analysis of SGLT2 protein. In addition, PCR analysis revealed very low mRNA levels in basal EMBs from diabetic and non-diabetic patients (p = NS), whereas final EMBs from diabetic patients showed higher SGLT2 mRNA levels in diabetic compared to non-diabetic patients (p < 0.05). Cultured human cardiomyocytes exposed to high-glucose showed increased expression of SGLT2 protein compared to cells exposed to normal glucose (p < 0.05). The presence of SGLT2 in cardiomyocytes supports the hypothesis of SGLT2i-mediated impact on metabolic pathways within cardiomyocytes. Moreover, metabolic disorders linked to diabetes may lead promptly to upregulation of SGLT2 levels in human cardiomyocytes.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetes Mellitus , Diabetes Mellitus/metabolism , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Glucose/metabolism , Humans , Myocytes, Cardiac/metabolism , Prospective Studies , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sodium/metabolism , Sodium-Glucose Transporter 2/genetics , Sodium-Glucose Transporter 2/metabolism
18.
Front Cardiovasc Med ; 9: 1008922, 2022.
Article in English | MEDLINE | ID: mdl-36148061

ABSTRACT

Atherosclerosis is a progressive inflammatory disease leading to mortality and morbidity in the civilized world. Atherosclerosis manifests as an accumulation of plaques in the intimal layer of the arterial wall that, by its subsequent erosion or rupture, triggers cardiovascular diseases. Diabetes mellitus is a well-known risk factor for atherosclerosis. Indeed, Type 2 diabetes mellitus patients have an increased risk of atherosclerosis and its associated-cardiovascular complications than non-diabetic patients. Sodium-glucose co-transport 2 inhibitors (SGLT2i), a novel anti-diabetic drugs, have a surprising advantage in cardiovascular effects, such as reducing cardiovascular death in a patient with or without diabetes. Numerous studies have shown that atherosclerosis is due to a significant inflammatory burden and that SGLT2i may play a role in inflammation. In fact, several experiment results have demonstrated that SGLT2i, with suppression of inflammatory mechanism, slows the progression of atherosclerosis. Therefore, SGLT2i may have a double benefit in terms of glycemic control and control of the atherosclerotic process at a myocardial and vascular level. This review elaborates on the anti-inflammatory effects of sodium-glucose co-transporter 2 inhibitors on atherosclerosis.

19.
Front Pharmacol ; 13: 868365, 2022.
Article in English | MEDLINE | ID: mdl-35656292

ABSTRACT

The cellular mechanisms involved in myocardial ischemia/reperfusion injury (I/R) pathogenesis are complex but attributable to reactive oxygen species (ROS) production. ROS produced by coronary endothelial cells, blood cells (e.g., leukocytes and platelets), and cardiac myocytes have the potential to damage vascular cells directly and cardiac myocytes, initiating mechanisms that induce apoptosis, inflammation, necrosis, and fibrosis of myocardial cells. In addition to reducing blood pressure, lisinopril, a new non-sulfhydryl angiotensin-converting enzyme (ACE) inhibitor, increases the antioxidant defense in animals and humans. Recently, it has been shown that lisinopril can attenuate renal oxidative injury in the l-NAME-induced hypertensive rat and cause an impressive improvement in the antioxidant defense system of Wistar rats treated with doxorubicin. The potential effect of lisinopril on oxidative damage and fibrosis in human cardiomyocytes has not been previously investigated. Thus, the present study aims to investigate the effect of different doses of lisinopril on oxidative stress and fibrotic mediators in AC16 human cardiomyocytes, along with a 7-day presence in the culture medium. The results revealed that AC16 human cardiomyocytes exposed to lisinopril treatment significantly showed an upregulation of proteins involved in protecting against oxidative stress, such as catalase, SOD2, and thioredoxin, and a reduction of osteopontin and Galectin-3, critical proteins involved in cardiac fibrosis. Moreover, lisinopril treatment induced an increment in Sirtuin 1 and Sirtuin 6 protein expression. These findings demonstrated that, in AC16 human cardiomyocytes, lisinopril could protect against oxidative stress and fibrosis via the activation of Sirtuin 1 and Sirtuin 6 pathways.

20.
Front Cardiovasc Med ; 9: 913429, 2022.
Article in English | MEDLINE | ID: mdl-35548429

ABSTRACT

[This corrects the article DOI: 10.3389/fcvm.2021.767064.].

SELECTION OF CITATIONS
SEARCH DETAIL