Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Redox Biol ; 70: 103060, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38310682

ABSTRACT

There is a complex interrelationship between the nervous system and the cardiovascular system. Comorbidities of cardiovascular diseases (CVD) with mental disorders, and vice versa, are prevalent. Adults with mental disorders such as anxiety and depression have a higher risk of developing CVD, and people with CVD have an increased risk of being diagnosed with mental disorders. Oxidative stress is one of the many pathways associated with the pathophysiology of brain and cardiovascular disease. Nicotinamide adenine dinucleotide phosphate oxidase (NOX) is one of the major generators of reactive oxygen species (ROS) in mammalian cells, as it is the enzyme that specifically produces superoxide. This review summarizes recent findings on the consequences of NOX activation in thrombosis and depression. It also discusses the therapeutic effects and pharmacological strategies of NOX inhibitors in CVD and brain disorders. A better comprehension of these processes could facilitate the development of new therapeutic approaches for the prevention and treatment of the comorbidity of thrombosis and depression.


Subject(s)
Cardiovascular Diseases , Thrombosis , Animals , Humans , NADPH Oxidases/metabolism , NADP/metabolism , Depression/drug therapy , Oxidative Stress , Reactive Oxygen Species/metabolism , Thrombosis/drug therapy , Comorbidity , Mammals/metabolism
2.
J Gerontol A Biol Sci Med Sci ; 78(11): 1935-1943, 2023 10 28.
Article in English | MEDLINE | ID: mdl-37422721

ABSTRACT

Frailty is a geriatric syndrome characterized by age-related decline in physiological reserves and functions in multiple organ systems, including the musculoskeletal, neuroendocrine/metabolic, and immune systems. Animal models are essential to study the biological basis of aging and potential ways to delay the onset of age-related phenotypes. Unfortunately, validated animal models of frailty are still lacking in preclinical research. The senescence-accelerated prone-8 (SAMP8) mouse strain exhibits early cognitive loss that mimics the deterioration of learning and memory in the elderly and is widely used as a model of aging and neurodegenerative diseases. Here, we examined the frailty phenotype, which includes body weight, strength, endurance, activity, and slow walking speed, in male and female SAMP8 and senescence-accelerated mouse resistant (SAMR1) mice at 6- and 9-months of age. We found that the prevalence of frailty was higher in SAMP8 mice compared with SAMR1 mice, regardless of sex. The overall percentage of prefrail and frail mice was similar in male and female SAMP8 mice, although the percentage of frail mice was slightly higher in males than in females. In addition, we found sex- and frailty-specific changes in selected miRNAs blood levels. In particular, the levels of miR-34a-5p and miR-331-3p were higher in both prefrail and frail mice, whereas miR-26b-5p was increased only in frail mice compared with robust mice. Finally, levels of miR-331-3p were also increased in whole blood from a small group of frail patients. Overall, these results suggest that SAMP8 mice may be a useful mouse model for identifying potential biomarkers and studying biological mechanisms of frailty.


Subject(s)
Frailty , MicroRNAs , Humans , Mice , Male , Female , Animals , Aged , MicroRNAs/genetics , Frailty/genetics , Sex Characteristics , Aging/physiology , Phenotype , Biomarkers , Disease Models, Animal
3.
Cardiovasc Res ; 119(3): 647-667, 2023 05 02.
Article in English | MEDLINE | ID: mdl-35895876

ABSTRACT

A bidirectional relationship exists between hypertension and psychiatric disorders, including unipolar and bipolar depression, anxiety, post-traumatic stress disorder (PTSD), psychosis, schizophrenia, mania, and dementia/cognitive decline. Repurposing of antihypertensive drugs to treat mental disorders is thus being explored. A systematic knowledge of the mechanisms of action and clinical consequences of the use of antihypertensive agents on neuropsychiatric functions has not been achieved yet. In this article, we review the putative role of antihypertensive agents in psychiatric disorders, discuss the targets and mechanisms of action, and examine how and to what extent specific drug classes/molecules may trigger, worsen, or mitigate psychiatric symptoms. In addition, we review pharmacokinetics (brain penetration of drugs) and pharmacogenetics data that add important information to assess risks and benefits of antihypertensive drugs in neuropsychiatric settings. The scientific literature shows robust evidence of a positive effect of α1 blockers on PTSD symptoms, nightmares and sleep quality, α2 agonists on core symptoms, executive function, and quality of life in Attention-Deficit/Hyperactivity Disorder, PTSD, Tourette's syndrome, and ß blockers on anxiety, aggression, working memory, and social communication. Renin-angiotensin system modulators exert protective effects on cognition, depression, and anxiety, and the loop diuretic bumetanide reduced the core symptoms of autism in a subset of patients. There is no evidence of clear benefits of calcium channel blockers in mood disorders in the scientific literature. These findings are mainly from preclinical studies; clinical data are still insufficient or of anecdotal nature and seldom systematic. The information herewith provided can support a better therapeutic approach to hypertension, tailored to patients with, or with high susceptibility to, psychiatric illness. It may prompt clinical studies exploring the potential benefit of antihypertensive drugs in selected patients with neuropsychiatric comorbidities that include outcomes of neuropsychiatric interest and specifically assess undesirable effects or interactions.


Subject(s)
Antihypertensive Agents , Hypertension , Humans , Antihypertensive Agents/adverse effects , Quality of Life , Calcium Channel Blockers , Hypertension/diagnosis , Hypertension/drug therapy , Hypertension/chemically induced , Brain
4.
Front Biosci (Landmark Ed) ; 27(5): 161, 2022 05 18.
Article in English | MEDLINE | ID: mdl-35638428

ABSTRACT

BACKGROUND: Platelet-derived extracellular vesicles (PEVs) are small vesicles released by activated platelets that are gaining growing interest in the field of vascular biology. The mode of platelet activation is a critical determinant of PEVs release, phenotype and function. However, only very limited information is available concerning the impact of the platelet purification procedure on PEVs release. METHODS: Washed or isolated platelets were separated by differential centrifugations. For washed platelets, the platelet pellet was washed by resuspension in PIPES buffer and finally resuspended in HEPES buffer. Isolated platelets were obtained by directly resuspending the platelet pellet in HEPES, skipping the washing steps in PIPES buffer. PEVs release was induced in washed or isolated platelets by stimulation with different agonist and analysed by Nanoparticle Tracking Analysis. RESULTS: Isolated platelets showed a higher release of PEVs upon adenosine diphosphate (ADP) stimulation compared to washed platelets, whereas PEVs released upon stimulation with strong agonists (thrombin, collagen, A23187, U46619) were similar in the two groups. This different responsiveness to ADP was also observed as a higher α-granules release and protein kinase C activation in isolated platelets compared to washed ones. Residual plasma contamination appeared to be essential for the ability of platelets to release PEVs in response to ADP. CONCLUSIONS: In conclusion, our study strongly suggests that procedure adopted for platelets preparation is a critical determinant of PEVs release upon ADP stimulation.


Subject(s)
Blood Platelets , Extracellular Vesicles , Adenosine Diphosphate/metabolism , Adenosine Diphosphate/pharmacology , Blood Platelets/metabolism , Extracellular Vesicles/metabolism , HEPES/metabolism , Platelet Activation
5.
Int J Mol Sci ; 23(5)2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35269975

ABSTRACT

Prenylcysteine Oxidase 1 (PCYOX1) is an enzyme involved in the degradation of prenylated proteins. It is expressed in different tissues including vascular and blood cells. We recently showed that the secretome from Pcyox1-silenced cells reduced platelet adhesion both to fibrinogen and endothelial cells, suggesting a potential contribution of PCYOX1 into thrombus formation. Here, we show that in vivo thrombus formation after FeCl3 injury of the carotid artery was delayed in Pcyox1-/- mice, which were also protected from collagen/epinephrine induced thromboembolism. The Pcyox1-/- mice displayed normal blood cells count, vascular procoagulant activity and plasma fibrinogen levels. Deletion of Pcyox1 reduced the platelet/leukocyte aggregates in whole blood, as well as the platelet aggregation, the alpha granules release, and the αIIbß3 integrin activation in platelet-rich plasma, in response to adenosine diphosphate (ADP) or thrombin receptor agonist peptide (TRAP). Washed platelets from the Pcyox1-/- and WT animals showed similar phosphorylation pathway activation, adhesion ability and aggregation. The presence of Pcyox1-/- plasma impaired agonist-induced WT platelet aggregation. Our findings show that the absence of PCYOX1 results in platelet hypo-reactivity and impaired arterial thrombosis, and indicates that PCYOX1 could be a novel target for antithrombotic drugs.


Subject(s)
Carbon-Sulfur Lyases/metabolism , Endothelial Cells , Thrombosis , Animals , Blood Platelets/metabolism , Cysteine/analogs & derivatives , Endothelial Cells/metabolism , Fibrinogen/metabolism , Mice , Oxidoreductases/metabolism , Platelet Activation , Platelet Aggregation , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Thrombosis/metabolism
6.
Biomed Pharmacother ; 146: 112557, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34965503

ABSTRACT

Depression is associated with thrombotic risk and arterial events, its proper management is strongly recommended in coronary artery disease (CAD) patients. We have previously shown that the Brain-Derived Neurotrophic Factor (BDNF)Val66Met polymorphism, related to depression, is associated with arterial thrombosis in mice, and with an increased risk of acute myocardial infarction in humans. Herein, expanding the previous findings on BDNFVal66Met polymorphism, we show that desipramine, a norepinephrine reuptake-inhibitor, rescues behavioral impairments, reduces the arterial thrombosis risk, abolishes pathological coagulation and platelet hyper-reactivity, normalizes leukocyte, platelet, and bone marrow megakaryocyte number and restores physiological norepinephrine levels in homozygous knock-in BDNF Val66Met (BDNFMet/Met) mice. The in vitro data confirm the enhanced procoagulant activity and the alpha2A-adrenergic receptor (α2A-ADR) overexpression found in BDNFMet/Met mice and we provide evidence that, in presence of Met variant, norepinephrine is crucial to up-regulate procoagulant activity and to enhance platelet generation. The α2-ADR antagonist rauwolscine rescues the prothrombotic phenotype in BDNFMet/Met mice and reduces procoagulant activity and platelet generation in cells transfected with BDNFMet plasmid or exposed to pro-BDNFMet peptide. Finally, we show that homozygous BDNFMet/Met CAD patients have hyper-reactive platelets overexpressing abundant α2A-ADR. The great proplatelet release from their megakaryocytes well reflects their higher circulating platelet number compared to BDNFVal/Val patients. These data reveal an unprecedented described role of Met allele in the dysregulation of norepinephrine/α2A-ADR pathway that may explain the predisposition to arterial thrombosis. Overall, the development of α2A-ADR inhibitors might represent a pharmacological treatment for depression-associated thrombotic conditions in this specific subgroup of CAD patients.


Subject(s)
Blood Coagulation/physiology , Brain-Derived Neurotrophic Factor/genetics , Depression/pathology , Norepinephrine/metabolism , Receptors, Adrenergic, alpha-2/metabolism , Thrombosis/pathology , Aged , Aged, 80 and over , Animals , Coronary Artery Disease/pathology , Desipramine/pharmacology , Female , Humans , Male , Mice , Middle Aged , Polymorphism, Single Nucleotide
7.
Int J Mol Sci ; 22(15)2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34360827

ABSTRACT

The identification of new biomarkers allowing an early and more accurate characterization of patients with ST-segment elevation myocardial infarction (STEMI) is still needed, and exosomes represent an attractive diagnostic tool in this context. However, the characterization of their protein cargo in relation to cardiovascular clinical manifestation is still lacking. To this end, 35 STEMI patients (17 experiencing resuscitated out-of-hospital cardiac arrest (OHCA-STEMI) and 18 uncomplicated) and 32 patients with chronic coronary syndrome (CCS) were enrolled. Plasma exosomes were characterized by the nanoparticle tracking analysis and Western blotting. Exosomes from STEMI patients displayed a higher concentration and size and a greater expression of platelet (GPIIb) and vascular endothelial (VE-cadherin) markers, but a similar amount of cardiac troponin compared to CCS. In addition, a difference in exosome expression of acute-phase proteins (ceruloplasmin, transthyretin and fibronectin) between STEMI and CCS patients was found. GPIIb and brain-associated marker PLP1 accurately discriminated between OHCA and uncomplicated STEMI. In conclusion, the exosome profile of STEMI patients has peculiar features that differentiate it from that of CCS patients, reflecting the pathophysiological mechanisms involved in STEMI. Additionally, the exosome expression of brain- and platelet-specific markers might allow the identification of patients experiencing ischemic brain injury in STEMI.


Subject(s)
Exosomes/metabolism , Out-of-Hospital Cardiac Arrest/blood , ST Elevation Myocardial Infarction/blood , Aged , Biomarkers/blood , Ceruloplasmin/analysis , Exosomes/chemistry , Fibronectins/blood , Humans , Male , Middle Aged , Prealbumin/analysis , ST Elevation Myocardial Infarction/complications , Troponin/blood
8.
Biomolecules ; 11(6)2021 06 15.
Article in English | MEDLINE | ID: mdl-34203655

ABSTRACT

Anxiety disorders are common mental health diseases affecting up to 7% of people around the world. Stress is considered one of the major environmental risk factors to promote anxiety disorders through mechanisms involving epigenetic changes. Moreover, alteration in redox balance and increased reactive oxygen species (ROS) production have been detected in anxiety patients and in stressed-animal models of anxiety. Here we tested if the administration of apocynin, a natural origin antioxidant, may prevent the anxiety-like phenotype and reduction of histone acetylation induced by a subchronic forced swimming stress (FSS) paradigm. We found that apocynin prevented the enhanced latency time in the novelty-suppressed feeding test, and the production of malondialdehyde induced by FSS. Moreover, apocynin was able to block the upregulation of p47phox, a key subunit of the NADPH oxidase complex. Finally, apocynin prevented the rise of hippocampal Hdac1, Hdac4 and Hdac5, and the reduction of histone-3 acetylation levels promoted by FSS exposure. In conclusion, our results provide evidence that apocynin reduces the deleterious effect of stress and suggests that oxidative stress may regulate epigenetic mechanisms.


Subject(s)
Acetophenones/pharmacology , Anxiety Disorders/enzymology , Behavior, Animal/drug effects , Gene Expression Regulation, Enzymologic/drug effects , Hippocampus/enzymology , Histone Deacetylases/biosynthesis , Stress, Psychological/enzymology , Animals , Anxiety Disorders/drug therapy , Anxiety Disorders/physiopathology , Hippocampus/physiopathology , Male , Mice , Stress, Psychological/drug therapy , Stress, Psychological/physiopathology
9.
Diagnostics (Basel) ; 10(11)2020 Nov 12.
Article in English | MEDLINE | ID: mdl-33198302

ABSTRACT

Exosomes are nano-sized biovesicles of endocytic origin physiologically released by nearly all cell types into surrounding body fluids. They carry cell-specific cargos of protein, lipids, and genetic materials and can be selectively taken up by neighboring or distant cells. Since the intrinsic properties of exosomes are strictly influenced by the state of the parental cell and by the cellular microenvironment, the analysis of exosome origin and content, and their cell-targeting specificity, make them attractive as possible diagnostic and prognostic biomarkers. While the possible role of exosomes as messengers and a regenerative tool in cardiovascular diseases (CVDs) is actively investigated, the evidence about their usefulness as biomarkers is still limited and incomplete. Further complications are due to the lack of consensus regarding the most appropriate approach for exosome isolation and characterization, both important issues for their effective clinical translation. As a consequence, in this review, we will discuss the few information currently accessible about the diagnostic/prognostic potential of exosomes in CVDs and on the methodologies available for exosome isolation, analysis, and characterization.

10.
Brain Behav Immun ; 89: 440-450, 2020 10.
Article in English | MEDLINE | ID: mdl-32726686

ABSTRACT

The Brain-Derived Neurotrophic Factor (BDNF) Val66Met polymorphism has been correlated with increased predisposition to develop cognitive and psychiatric disorders, and with a reduced response to some therapeutic treatments. However, the mechanisms underlying these impairments are currently not completely understood. Remarkably, kynurenine pathway alterations have also been implicated in cognitive and psychiatric disorders. Moreover, recent evidence suggests that physical exercise may promote beneficial effects by controlling kynurenine metabolism in the muscle. The aim of the present study was to assess whether the kynurenine pathway was differentially regulated in sedentary and exercising wild-type (BDNFVal/Val) and homozygous knock-in BDNF Val66Met (BDNFMet/Met) mice. We found that plasma and hippocampal levels of kynurenic acid and the hippocampal mRNA levels of IDO1 and KAT2 protein levels were increased in BDNFMet/Met mice and were not modulated by physical exercise. On the contrary, KAT1 protein levels in the gastrocnemius muscle were reduced, whereas MCP1 mRNA in the gastrocnemius muscle and GFAP protein in the hippocampus were increased in BDNFMet/Met mice compared to BDNFVal/Val mice, and reduced by physical exercise. Physical exercise increased plasmatic kynurenine levels only in BDNFMet/Met mice, and protein levels of KAT1 and KAT4 in the gastrocnemius muscle and hippocampus respectively, regardless of the genotype. Finally, we found that physical exercise was able to enhance the hippocampal-dependent memory only in the BDNFVal/Val mice. Overall our results showing an overactivation of the kynurenine pathway in the BDNFMet/Met mice may suggest a possible mechanism underlying the cognitive deficits reported in the BDNF Val66Met carriers.


Subject(s)
Brain-Derived Neurotrophic Factor , Kynurenine , Animals , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Genotype , Hippocampus/metabolism , Mice , Polymorphism, Single Nucleotide
11.
J Cell Physiol ; 235(12): 9667-9675, 2020 12.
Article in English | MEDLINE | ID: mdl-32430940

ABSTRACT

Obesity, a rising public health burden, is a multifactorial disease with an increased risk for patients to develop several pathological conditions including type 2 diabetes mellitus, hypertension, and cardiovascular disease. Increasing evidence suggests a relationship between the human brain-derived neurotrophic factor (BDNF) Val66Met single-nucleotide polymorphism (SNP) and obesity, although the underlying mechanisms of this connection are still not completely understood. In the present study, we found that homozygous knock-in BDNFMet/Met mice were overweight and hyperphagic compared to wildtype BDNFVal/Val mice. Increased food intake was associated with reduction of total BDNF and BDNF1, BDNF4 and BDNF6 transcripts in the hypothalamus of BDNFMet/Met mice. In contrast, in the white adipose tissue total BDNF and Glut4 expression levels were augmented, while sirtuin 1 and leptin receptor (Ob-R) expression levels were reduced in BDNFMet/Met mice. Moreover, plasmatic leptin levels were decreased in BDNFMet/Met mice. However, BDNFVal/Val and BDNFMet/Met mice showed a similar response to the insulin tolerance test and glucose tolerance test. Altogether, these results suggest that BDNF Val66Met SNP strongly contributes to adipose tissue pathophysiology, resulting in reduced circulating leptin levels and hypothalamic expression of BDNF, which, in turn, promote increased food intake and overweight in BDNFMet/Met mice.


Subject(s)
Brain-Derived Neurotrophic Factor/genetics , Diabetes Mellitus, Type 2/genetics , Eating/genetics , Glucose Transporter Type 4/genetics , Obesity/genetics , Animals , Diabetes Mellitus, Type 2/pathology , Gene Expression Regulation/genetics , Glucose Tolerance Test , Humans , Hypothalamus/metabolism , Insulin/metabolism , Mice , Obesity/pathology , Overweight/genetics , Overweight/pathology , Polymorphism, Single Nucleotide/genetics , Sirtuin 1/genetics
12.
Sci Rep ; 9(1): 389, 2019 01 23.
Article in English | MEDLINE | ID: mdl-30674980

ABSTRACT

Circulating levels of Brain Derived Neurotrophic Factor (BDNF) are lower in coronary heart disease (CHD) than in healthy subjects and are associated with coronary events and mortality. However, the mechanism(s) underling this association is not fully understood. We hypothesize that BDNF may influence fibrin fiber structure and clot stability, favoring clot lysis and thrombus resolution. We showed that recombinant BDNF (rh-BDNF) influenced with clot formation in a concentration-dependent manner in both purified fibrinogen and plasma from healthy subjects. In particular, rh-BDNF reduced the density of fibrin fibers, the maximum clot firmness (MCF) and the maximum clot turbidity, and affected the lysis of clot. In addition, both thrombin and reptilase clotting time were prolonged by rh-BDNF, despite the amount of thrombin formed was greater. Intriguingly, CHD patients had lower levels of BDNF, greater fibrin fibers density, higher MCF than control subjects, and a negative correlation between BDNF and MCF was found. Of note, rh-BDNF markedly modified fibrin clot profile restoring physiological clot morphology in CHD plasma. In conclusion, we provide evidence that low levels of BDNF correlate with the formation of bigger thrombi (in vitro) and that this effect is mediated, at least partially, by the alteration of fibrin fibers formation.


Subject(s)
Blood Coagulation , Brain-Derived Neurotrophic Factor/metabolism , Coronary Disease/metabolism , Fibrin/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Coronary Disease/pathology , Humans , Male , Middle Aged
14.
Int J Mol Sci ; 19(8)2018 Aug 03.
Article in English | MEDLINE | ID: mdl-30081509

ABSTRACT

Reduction in brain-derived neurotrophic factor (BDNF) expression in the brain as well as mutations in BDNF gene and/or of its receptor are associated to obesity in both human and animal models. However, the association between circulating levels of BDNF and obesity is still not defined. To answer this question, we performed a meta-analysis carrying out a systematic search in electronic databases. Ten studies (307 obese patients and 236 controls) were included in the analysis. Our data show that obese patients have levels of BDNF similar to those of controls (SMD: 0.01, 95% CI: -0.28, 0.30, p = 0.94). The lack of difference was further confirmed both in studies in which BDNF levels were assessed in serum (MD: -0.93 ng/mL, 95% CI: -3.34, 1.48, p = 0.45) and in plasma (MD: 0.15 ng/mL, 95% CI: -0.09, 0.39, p = 0.23). Data evaluation has shown that some bias might affect BDNF measurements (e.g., subject recruitment, procedures of sampling, handling, and storage), leading to a difficult interpretation of the results. Standardization of the procedures is still needed to reach strong, affordable, and reliable conclusions.


Subject(s)
Brain-Derived Neurotrophic Factor/blood , Animals , Brain/metabolism , Brain-Derived Neurotrophic Factor/genetics , Databases, Factual , Female , Humans , Male , Obesity/blood , Obesity/metabolism
16.
Thromb Haemost ; 117(8): 1486-1497, 2017 07 26.
Article in English | MEDLINE | ID: mdl-28536720

ABSTRACT

Deep-vein thrombosis (DVT) is a common condition that often leads to pulmonary thromboembolism (VTE) and death. The role of prostaglandin-endoperoxide synthase (PTGS)2 in arterial thrombosis has been well established, whereas its impact in venous thrombosis remains unclear. Here, we showed that PTGS2 deletion predisposes to venous thrombosis as suggested by greater clot firmness and clot elasticity, by higher plasma levels of functional fibrinogen, factor VIII and PAI-1 activity, and proved by bigger thrombi detected after inferior vena cava ligation (IVCL) compared to WT mice. PTGS2-/- thrombi have greater fibrin content, higher number of F4/80+, TF+ and ANXA2+ cells, and lower S100A10+ cells. Remarkably, monocyte depletion reduced thrombus size in mutant mice, suggesting an important role of PTGS2-/- monocytes in this experimental setting. Interestingly, PTGS2 deletion reduced membrane ANXA2, and total S100A10, promoted assembly of ANXA2/p50NF-kB complex and its nuclear accumulation, and induced TF in peritoneal macrophages, whereas ANXA2 silencing decreased dramatically TF. Finally, Carbaprostacyclin treatment prevented venous thrombus formation induced by IVCL in mutant mice, reduced the ANXA2 binding to p50NF-kB subunit and its nuclear trafficking, and decreased TF in PTGS2-/- macrophages. PTGS2 deletion, changing the natural distribution of ANXA2 in monocytes/macrophages, increases TF expression and activity predisposing to venous thrombosis. Interestingly, Carbaprostacyclin treatment, inhibiting nuclear ANXA2 trafficking, controls monocyte TF activity and prevents DVT occurrence. Our data are of help in elucidating the mechanisms by which PTGS2 inhibition increases DVT risk, and suggest a new role for ANXA2 in venous thrombosis.


Subject(s)
Annexin A2/metabolism , Blood Coagulation , Cyclooxygenase 2/deficiency , Gene Deletion , Monocytes/enzymology , Venous Thrombosis/enzymology , Animals , Annexin A2/genetics , Antigens, Differentiation/metabolism , Blood Coagulation/drug effects , Cyclooxygenase 2/genetics , Disease Models, Animal , Epoprostenol/analogs & derivatives , Epoprostenol/pharmacology , Factor VIII/metabolism , Fibrinogen/metabolism , Fibrinolytic Agents/pharmacology , Genetic Predisposition to Disease , Mice , Mice, Knockout , Monocytes/drug effects , NF-kappa B p50 Subunit/metabolism , Phenotype , Plasminogen Activator Inhibitor 1/blood , Platelet Aggregation , Protein Transport , RAW 264.7 Cells , S100 Proteins/metabolism , Thromboplastin/metabolism , Time Factors , Venous Thrombosis/blood , Venous Thrombosis/genetics , Venous Thrombosis/prevention & control
17.
Eur Heart J ; 38(18): 1426-1435, 2017 May 07.
Article in English | MEDLINE | ID: mdl-26705390

ABSTRACT

AIMS: Epidemiological studies strongly suggest a link between stress, depression, and cardiovascular diseases (CVDs); the mechanistic correlation, however, is poorly understood. A single-nucleotide polymorphism in the BDNF gene (BDNFVal66Met), associated with depression and anxiety, has been proposed as a genetic risk factor for CVD. Using a knock-in mouse carrying the BDNFVal66Met human polymorphism, which phenocopies psychiatric-related symptoms found in humans, we investigated the impact of this SNP on thrombosis. METHODS AND RESULTS: BDNFMet/Met mice displayed a depressive-like phenotype concomitantly with hypercoagulable state and platelet hyperreactivity. Proteomic analysis of aorta secretome from BDNFMet/Met and wild-type (WT) mice showed differential expression of proteins involved in the coagulation and inflammatory cascades. The BDNF Met allele predisposed to carotid artery thrombosis FeCl3-induced and to death after collagen/epinephrine injection. Interestingly, transfection with BDNFMet construct induced a prothrombotic/proinflammatory phenotype in WT cells. SIRT1 activation, using resveratrol and/or CAY10591, prevented thrombus formation and restored the physiological levels of coagulation and of platelet markers in BDNFMet/Met mice and/or cells transfected with the Met allele. Conversely, inhibition of SIRT1 by sirtinol and/or by specific siRNA induced the prothrombotic/proinflammatory phenotype in WT mice and cells. Finally, we found that BDNF Met homozygosity is associated with increased risk of acute myocardial infarction (AMI) in humans. CONCLUSION: Activation of platelets, alteration in coagulation pathways, and changes in vessel wall protein expression in BDNFMet/Met mice recapitulate well the features occurring in the anxiety/depression condition. Furthermore, our data suggest that the BDNFVal66Met polymorphism contribute to the individual propensity for arterial thrombosis related to AMI.


Subject(s)
Brain-Derived Neurotrophic Factor/genetics , Depressive Disorder/genetics , Polymorphism, Single Nucleotide/genetics , Thrombosis/genetics , Animals , Anxiety Disorders/genetics , Aorta/physiology , Blood Coagulation/genetics , Carotid Arteries/physiology , Carotid Artery Thrombosis/genetics , Disease Models, Animal , Female , Heterozygote , Homozygote , Humans , Male , Mice, Transgenic , Middle Aged , Myocardial Ischemia/genetics , Nerve Tissue Proteins/metabolism , Platelet Activation/genetics , Platelet Aggregation Inhibitors/pharmacology , Receptors, Cell Surface/metabolism , Resveratrol , Signal Transduction/physiology , Sirtuin 1/antagonists & inhibitors , Stilbenes/pharmacology
18.
Platelets ; 28(1): 60-65, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27494459

ABSTRACT

Cigarette smoke (CS) activates platelets, promotes vascular dysfunction, and enhances Tissue Factor (TF) expression in blood monocytes favoring pro-thrombotic states. Brain-derived neurotrophic factor (BDNF), a member of the family of neurotrophins involved in survival, growth, and maturation of neurons, is released by activated platelets (APLTs) and plays a role in the cardiovascular system. The effect of CS on circulating levels of BDNF is controversial and the function of circulating BDNF in atherothrombosis is not fully understood. Here, we have shown that human platelets, treated with an aqueous extract of CS (CSE), released BDNF in a dose-dependent manner. In addition, incubation of human monocytes with BDNF or with the supernatant of platelets activated with CSE increased TF activity by a Tropomyosin receptor kinase B (TrkB)-dependent mechanism. Finally, comparing serum and plasma samples of 12 male never smokers (NS) and 29 male active smokers (AS) we observed a significant increase in microparticle-associated TF activity (MP-TF) as well as BDNF in AS, while in serum, BDNF behaved oppositely. Taken together these findings suggest that platelet-derived BDNF is involved in the regulation of TF activity and that CS plays a role in this pathway by favoring a pro-atherothrombotic state.


Subject(s)
Blood Coagulation Factors , Blood Platelets/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Monocytes/immunology , Monocytes/metabolism , Smoking/adverse effects , Adult , Aged , Blood Platelets/drug effects , Brain-Derived Neurotrophic Factor/pharmacology , Case-Control Studies , Cell-Derived Microparticles/metabolism , Humans , Male , Middle Aged , Monocytes/drug effects , Thromboplastin/metabolism
19.
Oxid Med Cell Longev ; 2017: 9258937, 2017.
Article in English | MEDLINE | ID: mdl-29317986

ABSTRACT

Environmental chronic stress (ECS) has been identified as a trigger of acute coronary syndromes (ACS). Changes in redox balance, enhanced reactive oxygen species (ROS) production, and platelet hyperreactivity were detected in both ECS and ACS. However, the mechanisms by which ECS predisposes to thrombosis are not fully understood. Here, we investigated the impact of ECS on platelet activation and megakaryopoiesis in mice and the effect of Apocynin in this experimental setting. ECS induced by 4 days of forced swimming stress (FSS) treatment predisposed to arterial thrombosis and increased oxidative stress (e.g., plasma malondialdehyde levels). Interestingly, Apocynin treatment prevented these alterations. In addition, FSS induced abnormal megakaryopoiesis increasing the number and the maturation state of bone marrow megakaryocytes (MKs) and affecting circulating platelets. In particular, a higher number of large and reticulated platelets with marked functional activation were detected after FSS. Apocynin decreased the total MK number and prevented their ability to generate ROS without affecting the percentage of CD42d+ cells, and it reduced the platelet hyperactivation in stressed mice. In conclusion, Apocynin restores the physiological megakaryopoiesis and platelet behavior, preventing the detrimental effect of chronic stress on thrombosis, suggesting its potential use in the occurrence of thrombosis associated with ECS.


Subject(s)
Acetophenones/pharmacology , Platelet Activation/drug effects , Stress, Physiological , Thrombopoiesis/drug effects , Acetophenones/therapeutic use , Adrenal Glands/physiology , Animals , Bone Marrow/metabolism , Bone Marrow/pathology , Male , Malondialdehyde/blood , Mice , NADP/metabolism , NADPH Oxidase 1/metabolism , Oxidative Stress/drug effects , P-Selectin/metabolism , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Reactive Oxygen Species/metabolism , Thrombosis/chemically induced , Thrombosis/pathology , Thrombosis/prevention & control , Thrombosis/veterinary
20.
Pharmacol Res ; 107: 415-425, 2016 05.
Article in English | MEDLINE | ID: mdl-27063941

ABSTRACT

Recent trials suggest that Aspirin (ASA) reduces the incidence of venous thromboembolism in human. However, the molecular mechanisms underlying this effect are still unclear. In this study we assessed the effects of ASA in venous thrombosis mouse model induced by inferior vena cava (IVC) ligation and we investigated the mechanisms responsible for this effect. ASA (3mg/kg daily for 2 days) treatment decreased the thrombus size, the amounts of tissue factor activity in plasma microvesicles (TF-MP) and the levels of 2,3-dinor Thromboxane B2 (TXB-M) in urine compared to control mice. Interestingly, the thrombus size positively correlated with both TF-MP activity and TXB-M. In addition, positive correlation was observed between TF-MP activity and TXB-M. A reduced number of neutrophils and monocytes, and of TF-positive cells accompanied to a lower amount of fibrin and neutrophil extracellular traps (NETs) were also found in thrombi of ASA-treated mice. Similar results were obtained when mice were treated 24h before IVC ligation with SQ29548 (1mg/kg), a selective thromboxane receptor antagonist. In addition, transfusion of platelets in SQ29548 treated-mice excluded the likelihood of a redundant role of platelet-TP receptor in this context. Finally, incubation of macrophages and neutrophils with SQ29548 prevented TF activity and/or NETs formation induced by supernatant of activated platelets or by IBOP, a selective thromboxane analogue. In conclusion, ASA, suppressing TXA2, prevents macrophages and neutrophils activation and markedly reduces thrombus size with a mechanism most likely dependent of the inhibition of TF activity and NETs formation. These results provide a new link between platelet-produced thromboxane and the occurrence of venous thrombosis.


Subject(s)
Aspirin , Platelet Activation/drug effects , Platelet Aggregation Inhibitors , Thromboxanes/metabolism , Venous Thrombosis/drug therapy , Animals , Aspirin/pharmacology , Aspirin/therapeutic use , Blood Platelets/drug effects , Blood Platelets/metabolism , Cell-Derived Microparticles , Disease Models, Animal , Male , Mice , Neutrophils/drug effects , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation Inhibitors/therapeutic use , Thromboplastin/metabolism , Vena Cava, Inferior/surgery , Venous Thrombosis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...