Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Inorg Chem ; 60(18): 14174-14189, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34477373

ABSTRACT

Ruthenium(II) complexes (Ru1-Ru5), with the general formula [Ru(N-S)(dppe)2]PF6, bearing two 1,2-bis(diphenylphosphino)ethane (dppe) ligands and a series of mercapto ligands (N-S), have been developed. The combination of these ligands in the complexes endowed hydrophobic species with high cytotoxic activity against five cancer cell lines. For the A549 (lung) and MDA-MB-231 (breast) cancer cell lines, the IC50 values of the complexes were 288- to 14-fold lower when compared to cisplatin. Furthermore, the complexes were selective for the A549 and MDA-MB-231 cancer cell lines compared to the MRC-5 nontumor cell line. The multitarget character of the complexes was investigated by using calf thymus DNA (CT DNA), human serum albumin, and human topoisomerase IB (hTopIB). The complexes potently inhibited hTopIB. In particular, complex [Ru(dmp)(dppe)2]PF6 (Ru3), bearing the 4,6-diamino-2-mercaptopyrimidine (dmp) ligand, effectively inhibited hTopIB by acting on both the cleavage and religation steps of the catalytic cycle of this enzyme. Molecular docking showed that the Ru1-Ru5 complexes have binding affinity by active sites on the hTopI and hTopI-DNA, mainly via π-alkyl and alkyl hydrophobic interactions, as well as through hydrogen bonds. Complex Ru3 displayed significant antitumor activity against murine melanoma in mouse xenograph models, but this complex did not damage DNA, as revealed by Ames and micronucleus tests.


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , DNA Topoisomerases, Type I/metabolism , Phosphines/pharmacology , Ruthenium/pharmacology , Topoisomerase I Inhibitors/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Drug Screening Assays, Antitumor , Humans , Ligands , Phosphines/chemistry , Ruthenium/chemistry , Topoisomerase I Inhibitors/chemical synthesis , Topoisomerase I Inhibitors/chemistry , Tumor Cells, Cultured
2.
Redox Biol ; 20: 182-194, 2019 01.
Article in English | MEDLINE | ID: mdl-30359932

ABSTRACT

Piplartine (piperlongumine) is a plant-derived compound found in some Piper species that became a novel potential antineoplastic agent. In the present study, we synthesized a novel platinum complex containing a piplartine derivative cis-[PtCl(PIP-OH)(PPh3)2]PF6 (where, PIP-OH = piplartine demethylated derivative; and PPh3 = triphenylphosphine) with enhanced cytotoxicity in different cancer cells, and investigated its apoptotic action in human promyelocytic leukemia HL-60 cells. The structure of PIP-OH ligand was characterized by X-ray crystallographic analysis and the resulting platinum complex was characterized by infrared, molar conductance measurements, elemental analysis and NMR experiments. We found that the complex is more potent than piplartine in a panel of cancer cell lines. Apoptotic cell morphology, increased internucleosomal DNA fragmentation, without cell membrane permeability, loss of the mitochondrial transmembrane potential, increased phosphatidylserine externalization and caspase-3 activation were observed in complex-treated HL-60 cells. Treatment with the complex also caused a marked increase in the production of reactive oxygen species (ROS), and the pretreatment with N-acetyl-L-cysteine, an antioxidant, reduced the complex-induced apoptosis, indicating activation of ROS-mediated apoptosis pathway. Important, pretreatment with a p38 MAPK inhibitor (PD 169316) and MEK inhibitor (U-0126), known to inhibit ERK1/2 activation, also prevented the complex-induced apoptosis. The complex did not induce DNA intercalation in cell-free DNA assays. In conclusion, the complex exhibits more potent cytotoxicity than piplartine in a panel of different cancer cells and triggers ROS/ERK/p38-mediated apoptosis in HL-60 cells.


Subject(s)
Apoptosis/drug effects , Leukemia, Promyelocytic, Acute/metabolism , MAP Kinase Signaling System/drug effects , Oxidative Stress/drug effects , Platinum/pharmacology , Caspases/metabolism , Cell Survival/drug effects , HL-60 Cells , Humans , Leukemia, Promyelocytic, Acute/drug therapy , Leukemia, Promyelocytic, Acute/pathology , Ligands , Membrane Potential, Mitochondrial/drug effects , Models, Molecular , Molecular Structure , Platinum/chemistry , Reactive Oxygen Species/metabolism
3.
J Appl Toxicol ; 39(4): 630-638, 2019 04.
Article in English | MEDLINE | ID: mdl-30460706

ABSTRACT

Considering the promising previous results of ct-[RuCl(CO)(dppb)(bipy)]PF6 (where dppb = 1,4-bis(diphenylphosphino)butane and bipy = 2,2'-bipyridine) as an antitumor agent, novel biological assays evaluating its toxicogenic potential were performed. The genotoxicity of the compound was evaluated by the in vitro micronucleus test (V79, Chinese hamster lung fibroblasts; HepG2, hepatocellular carcinoma cells), in vivo bone marrow micronucleus test and comet assay in hepatocytes (Swiss mice). The animals were treated with 0.63, 1.25, 2.5 and 5.0 mg/kg body weight (bw) of the compound. Negative (water) and positive (cisplatin, 1.5 mg/kg bw; methyl methanesulfonate, 40 mg/kg bw) controls were included. The parameters considered in the comet assay were the percentage of tail DNA, tail moment and tail length. The results of the in vitro micronucleus tests showed the absence of genotoxicity in V79 cells, while the compound was genotoxic in HepG2 cells at a concentration of 1.25 µm. In the in vivo micronucleus test, the compound was not genotoxic at the different doses evaluated. In the comet assay, only the dose of 5.0 mg/kg bw resulted in a significant increase in the frequency of DNA damage in hepatocytes when compared to the negative control. The genotoxic effect observed in HepG2 cells and in the liver comet assay indicates that the compound was metabolized by hepatic cells.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Coordination Complexes/pharmacology , DNA Damage , Micronuclei, Chromosome-Defective/chemically induced , Ruthenium/chemistry , 2,2'-Dipyridyl/chemistry , Animals , Antineoplastic Agents/toxicity , Cell Survival/drug effects , Coordination Complexes/chemistry , Coordination Complexes/toxicity , Cricetulus , Dose-Response Relationship, Drug , Erythrocytes/drug effects , Erythrocytes/pathology , Fibroblasts/drug effects , Fibroblasts/pathology , Hep G2 Cells , Hepatocytes/drug effects , Hepatocytes/pathology , Humans , Male , Mice , Phosphines/chemistry
4.
Toxicol In Vitro ; 44: 382-391, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28774850

ABSTRACT

Lung cancer is the most frequent type of cancer worldwide. In Brazil, only 14% of the patients diagnosed with lung cancer survived 5years in the last decades. Although improvements in the therapeutic approach, it is relevant to identify new chemotherapeutic agents. In this framework, ruthenium metal compounds emerge as a promising alternative to platinum-based compounds once they displayed lower cytotoxicity and more selectivity for tumor cells. The present study aimed to evaluate the antitumor potential of innovative ruthenium(II) complex, [Ru(pipe)(dppb)(bipy)]PF6 (PIPE) on A549 cells, which is derived from non-small cell lung cancer. Results demonstrated that PIPE effectively reduced the viability and proliferation rate of A549 cells. When PIPE was used at 9µM there was increase in G0/G1 cell population with concomitant reduction in frequency of cells in S-phase, indicating cell cycle arrest in G1/S transition. Antiproliferative activity of PIPE was associated to its ability of reducing cyclin D1 expression and ERK phosphorylation levels. Cytotoxic activity of PIPE on A549 cells was observed when PIPE was used at 18µM, which was associated to its ability of inducing apoptosis by intrinsic pathway. Taken together, the data demonstrated that PIPE is a promising antitumor agent and further in vivo studies should be performed.


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Ruthenium/pharmacology , A549 Cells , Apoptosis/drug effects , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Cyclin D1/metabolism , Humans , Membrane Potential, Mitochondrial/drug effects , Mitogen-Activated Protein Kinase 3/metabolism
5.
J Inorg Biochem ; 164: 42-48, 2016 11.
Article in English | MEDLINE | ID: mdl-27613330

ABSTRACT

This study performed in vitro and in vivo biological assays of the ruthenium (II) compound ct-[RuCl(CO)(dppb)(bipy)]PF6 (where, dppb=1,4-bis(diphenylphosphine)butane and bipy=2,2'-bipyridine). The cytotoxic activity of this compound was evaluated against different tumor cell lines (HeLa, human cervical adenocarcinoma; MCF7, human breast adenocarcinoma; MO59J, human glioblastoma; HepG2, hepatocellular carcinoma and B16F10, murine melanoma) and healthy cell line (V79, Chinese hamster lung fibroblasts), by XTT (sodium 2,3'-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)-carbonyl]-3,4-tetrazolium-bis(4-methoxy-6-nitro)benzene-sulfonic acid hydrate) method. A syngeneic murine melanoma tumor model (B16F10) was used to evaluate its antitumor activity. Additionally, experiments were performed to assess the interactions with ctDNA (calf thymus DNA) and BSA (bovine serum albumin). The results showed that ct-[RuCl(CO)(dppb)(bipy)]PF6 was cytotoxic against all tumor cell lines tested. Furthermore, the compound was more effective against tumor cells compared to the normal cell line, indicating selectivity, especially in B16F10 cells. Significant tumor growth reduction was observed in animals treated with the compound compared to the untreated control. Histopathological analysis of tumor tissue revealed a significant reduction of mitosis in animals treated with the compound compared to the untreated control. In the ctDNA and BSA interaction experiments, the compound in study showed weak interactions with ctDNA and hydrophobic interactions with BSA. The ruthenium compound investigated showed promising results in in vitro and in vivo biological assays.


Subject(s)
Antineoplastic Agents , Coordination Complexes , DNA/chemistry , Neoplasms/drug therapy , Ruthenium , Serum Albumin, Bovine/chemistry , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cattle , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Cricetinae , Female , HeLa Cells , Hep G2 Cells , Humans , MCF-7 Cells , Mice , Neoplasms/metabolism , Neoplasms/pathology , Ruthenium/chemistry , Ruthenium/pharmacology
6.
Antimicrob Agents Chemother ; 58(10): 6044-55, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25092707

ABSTRACT

cis-[RuCl(NO2)(dppb)(5,5'-mebipy)] (complex 1), cis-[Ru(NO2)2(dppb)(5,5'-mebipy)] (complex 2), ct-[RuCl(NO)(dppb)(5,5'-mebipy)](PF6)2 (complex 3), and cc-[RuCl(NO)(dppb)(5,5'-mebipy)](PF6)2 (complex 4), where 5,5'-mebipy is 5,5'-dimethyl-2,2'-bipyridine and dppb is 1,4-bis(diphenylphosphino)butane, were synthesized and characterized. The structure of complex 2 was determined by X-ray crystallography. These complexes exhibited a higher anti-Trypanosoma cruzi activity than benznidazole, the current antiparasitic drug. Complex 3 was the most potent, displaying a 50% effective concentration (EC50) of 2.1 ± 0.6 µM against trypomastigotes and a 50% inhibitory concentration (IC50) of 1.3 ± 0.2 µM against amastigotes, while it displayed a 50% cytotoxic concentration (CC50) of 51.4 ± 0.2 µM in macrophages. It was observed that the nitrosyl complex 3, but not its analog lacking the nitrosyl group, releases nitric oxide into parasite cells. This release has a diminished effect on the trypanosomal protease cruzain but induces substantial parasite autophagy, which is followed by a series of irreversible morphological impairments to the parasites and finally results in cell death by necrosis. In infected mice, orally administered complex 3 (five times at a dose of 75 µmol/kg of body weight) reduced blood parasitemia and increased the survival rate of the mice. Combination index analysis of complex 3 indicated that its in vitro activity against trypomastigotes is synergic with benznidazole. In addition, drug combination enhanced efficacy in infected mice, suggesting that ruthenium-nitrosyl complexes are potential constituents for drug combinations.


Subject(s)
Autophagy/drug effects , Nitroso Compounds/pharmacology , Organometallic Compounds/pharmacology , Ruthenium/chemistry , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Animals , Female , Mice , Mice, Inbred BALB C , Nitroso Compounds/chemistry , Organometallic Compounds/chemistry , Trypanocidal Agents/chemistry
7.
J Inorg Biochem ; 136: 33-9, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24727183

ABSTRACT

The present study describes the synthesis, characterization, antileishmanial and antiplasmodial activities of novel diimine/(2,2'-bipyridine (bipy), 1,10-phenanthroline (phen), 4,4'-methylbipyridine (Me-bipy) and 4,4'-methoxybipyridine (MeO-bipy)/phosphine/ruthenium(II) complexes containing lapachol (Lap, 2-hydroxy-3-(3-33 methyl-2-buthenyl)-1,4-naphthoquinone) as bidentate ligand. The [Ru(Lap)(PPh3)2(bipy)]PF6 (1), [Ru(Lap)(PPh3)2(Me-bipy)]PF6 (2), [Ru(Lap)(PPh3)2(MeO-bipy)]PF6(3) and[Ru(Lap)(PPh3)2(phen)]PF6 (4) complexes, PPh3=triphenylphospine, were synthesized from the reactions of cis-[RuCl2(PPh3)2(X-bipy)] or cis-[RuCl2(PPh3)2(phen)], with lapachol. The [RuCl2(Lap)(dppb)] (5) [dppb=1,4-bis(diphenylphosphine)butane] was synthesized from the mer-[RuCl3(dppb)(H2O)] complex. The complexes were characterized by elemental analysis, molar conductivity, infrared and UV-vis spectroscopy, (31)P{(1)H} and (1)H NMR, and cyclic voltammetry. The Ru(III) complex, [RuCl2(Lap)(dppb)], was also characterized by the EPR technique. The structure of the complexes [Ru(Lap)(PPh3)2(bipy)]PF6 and [RuCl2(Lap)(dppb)] was elucidated by X-ray diffraction. The evaluation of the antiparasitic activities of the complexes against Leishmania amazonensis and Plasmodium falciparum demonstrated that lapachol-ruthenium complexes are more potent than the free lapachol. The [RuCl2(Lap)(dppb)] complex is the most potent and selective antiparasitic compound among the five new ruthenium complexes studied in this work, exhibiting an activity comparable to the reference drugs.


Subject(s)
Antimalarials/pharmacology , Coordination Complexes/pharmacology , Ruthenium/chemistry , Trypanocidal Agents/pharmacology , Animals , Antimalarials/chemical synthesis , Antimalarials/toxicity , Cell Line, Tumor , Coordination Complexes/chemical synthesis , Coordination Complexes/toxicity , Crystallography, X-Ray , Drug Evaluation, Preclinical , Humans , Inhibitory Concentration 50 , Leishmania/drug effects , Mice , Models, Molecular , Molecular Conformation , Naphthoquinones/chemistry , Plasmodium falciparum/drug effects , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/toxicity
8.
PLoS One ; 8(5): e64242, 2013.
Article in English | MEDLINE | ID: mdl-23724039

ABSTRACT

Rifampicin, discovered more than 50 years ago, represents the last novel class of antibiotics introduced for the first-line treatment of tuberculosis. Drugs in this class form part of a 6-month regimen that is ineffective against MDR and XDR TB, and incompatible with many antiretroviral drugs. Investments in R&D strategies have increased substantially in the last decades. However, the number of new drugs approved by drug regulatory agencies worldwide does not increase correspondingly. Ruthenium complexes (SCAR) have been tested in our laboratory and showed promising activity against Mycobacterium tuberculosis. These complexes showed up to 150 times higher activity against MTB than its organic molecule without the metal (free ligand), with low cytotoxicity and high selectivity. In this study, promising results inspired us to seek a better understanding of the biological activity of these complexes. The in vitro biological results obtained with the SCAR compounds were extremely promising, comparable to or better than those for first-line drugs and drugs in development. Moreover, SCAR 1 and 4, which presented low acute toxicity, were assessed by Ames test, and results demonstrated absence of mutagenicity.


Subject(s)
Antitubercular Agents/pharmacology , Coordination Complexes/pharmacology , Imines/pharmacology , Mycobacterium tuberculosis/drug effects , Phosphines/pharmacology , Picolinic Acids/pharmacology , Ruthenium/pharmacology , Animals , Antitubercular Agents/adverse effects , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Drug Resistance, Bacterial/drug effects , Female , Humans , Imines/chemical synthesis , Imines/chemistry , Mice , Mice, Inbred C57BL , Microbial Sensitivity Tests , Mutagenesis/drug effects , Mutagenicity Tests , Mycobacterium tuberculosis/growth & development , Mycobacterium tuberculosis/isolation & purification , Phosphines/chemical synthesis , Phosphines/chemistry , Picolinic Acids/chemical synthesis , Picolinic Acids/chemistry , Ruthenium/chemistry , Toxicity Tests, Acute
9.
Eur J Med Chem ; 46(10): 5099-107, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21875763

ABSTRACT

This paper describes the synthesis and characterization of four new ruthenium complexes containing 1,4 bis(diphenylphosphino)butane (dppb), 2-pyridinecarboxylic acid anion (pic) and the diimines [(2,2'-bipyridine (bipy), 4,4'-dimethyl-2,2'-bipyridine (Me-bipy), 4,4'-dichloro-2,2'-bipyridine (Cl-bipy) and 1,10-phenanthroline (phen) as ligands, with formulae [Ru(pic)(dppb)(bipy)]PF(6) (SCAR01), [Ru(pic)(dppb)(Me-bipy)]PF(6) (SCAR02), [Ru(pic)(dppb)(Cl-bipy)]PF(6) (SCAR03) and [Ru(pic)(dppb)(phen)]PF(6) (SCAR04). Additionally, the in vitro anti-Mycobacterium tuberculosis (MTB) activity, cytotoxicity and activity against in vitro infection of these complexes and two more complexes, cis-[Ru(pic)(dppe)(2)]PF(6) (SCAR05) and cis-[RuCl(2)(dppb)(bipy)] (SCAR06), and their free ligands are described and discussed. All compounds showed excellent MIC against MTB, low cytotoxicity and a selectivity index higher than 10. Also, all compounds showed significant intracellular inhibition and the compound SCAR05 showed a better activity than rifampin and SQ109. This is the first report of activity against in vitro infection of ruthenium compounds.


Subject(s)
Antitubercular Agents/pharmacology , Imines/pharmacology , Mycobacterium tuberculosis/drug effects , Phosphines/pharmacology , Picolinic Acids/pharmacology , Ruthenium/pharmacology , Animals , Antitubercular Agents/chemistry , Cell Line , Crystallography, X-Ray , Humans , Imines/chemistry , Mice , Models, Molecular , Organometallic Compounds/pharmacology , Phosphines/chemistry , Picolinic Acids/chemistry , Ruthenium/chemistry , Tuberculosis/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL