Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Theriogenology ; 62(7): 1198-217, 2004 Oct 01.
Article in English | MEDLINE | ID: mdl-15325547

ABSTRACT

Two experiments were conducted to evaluate sexual development in early- and late-maturing Nelore (Bos indicus) and Canchim (3/8 Bos indicus x 5/8 Bos taurus crossbred) bulls and to determine predictors of sexual precocity, and pubertal and maturity status. In Experiment 1, 12 Nelore bulls where examined from 300 to 900 days of age. Puberty was characterized by an ejaculate containing > or =50 million sperm with > or =10% motile sperm, and maturity by an ejaculate containing > or =70% morphologically normal sperm. In Experiment 2, 28 Canchim bulls where examined from 295 to 488 days of age and puberty was characterized by an ejaculate containing > or =30% motile sperm. In both experiments, bulls were classified as early- or late-maturing based on age at puberty. Early-maturing bulls were younger (P < 0.05) than late-maturing bulls at puberty (527 days versus 673 days in Experiment 1 and 360 days versus 461 days in Experiment 2) and at maturity (660 days versus 768 days in Experiment 1). In general, early-maturing bulls were heavier and had greater scrotal circumference (SC), testes, and testicular vascular cone diameter than late-maturing bulls during the experimental period. Scrotal circumference adjusted for 365 days of age was a good predictor of sexual precocity; minimum yearling SC of 19 and 24 cm for Nelore and Canchim bulls, respectively, had the best predictive values. Early-maturing bulls were lighter and had smaller SC at puberty than late-maturing bulls; therefore, sexual precocity was not related to the attainment of a threshold body weight or testicular size earlier, but to lower thresholds in early-maturing bulls. When predictors of pubertal status were evaluated, SC had the best sensitivity/specificity relationship in Nelore bulls, and high sensitivity and specificity in Canchim bulls. When predictors of sexual maturity were evaluated in Nelore bulls, age, weight, and SC had similar sensitivity, specificity, and predictive values. At puberty, approximately 60% of the sperm present in the ejaculate were morphologically defective. Changes in semen quality after puberty in Nelore bulls were characterized by increased motility and proportion of morphologically normal sperm, with a decrease in the proportion of major sperm defects. In conclusion, early-maturing bulls were more developed in the pre-pubertal period and attained puberty at earlier stages of body and testicular development than late-maturing bulls. Yearling SC could be used to select bulls for sexual precocity and SC was the best predictor of pubertal status. Age, weight, and SC were equally good predictors of sexual maturity in B. indicus bulls.


Subject(s)
Cattle/physiology , Sexual Maturation/physiology , Spermatogenesis/physiology , Spermatozoa/physiology , Age Factors , Animals , Body Weight/physiology , Brazil , Cattle/genetics , Crosses, Genetic , Male , Predictive Value of Tests , Scrotum/anatomy & histology , Sensitivity and Specificity , Sexual Maturation/genetics , Sperm Count/veterinary , Sperm Motility , Spermatogenesis/genetics , Testis/anatomy & histology
2.
Theriogenology ; 61(2-3): 511-28, 2004 Jan 15.
Article in English | MEDLINE | ID: mdl-14662148

ABSTRACT

Mechanisms of testicular thermoregulation, the relationship of scrotal, testicular vascular cone (TVC), and testicular morphology with thermoregulatory capability, and their effects on semen quality and sperm production were studied in 20 Bos indicus, 28 crossbred, and 26 Bos taurus bulls. The ratio of testicular artery length and volume to testicular volume were larger (P<0.05) in B. indicus and crossbred bulls than in B. taurus bulls (1.03 and 0.94 cm/cm3 versus 0.48 cm/cm3; 0.034 and 0.047 ml/cm3 versus 0.017 ml/cm3, respectively). Testicular artery wall thickness (average 192.5, 229.0, and 290.0 microm, respectively) and arterial-venous blood distance in the TVC (average 330.5, 373.7, and 609.4 microm, respectively) were smallest in B. indicus, intermediary in crossbred, and greatest in B. taurus bulls (P<0.05); the proximity between arterial and venous blood was consistent with the estimated decrease in arterial blood temperature after passage through the TVC (5.9, 5.0, and 2.9 degrees C, in B. indicus, crossbred, and B. taurus bulls, respectively). In crossbred and B. taurus bulls, there was a positive top-to-bottom scrotal temperature gradient and a negative testicular subtunic temperature gradient. However, in B. indicus bulls, both scrotal and testicular subtunic temperatures gradients were positive. Differences in the vascular arrangement, characteristics of the artery (e.g. wall thickness) or thickness of the tunica albuginea may have affected the testicular arterial blood and subtunic temperatures in B. indicus bulls. Better testicular thermoregulatory capability was associated with increased scrotal shape (pendulosity), testicular artery length and volume, and top-to-bottom gradient of the distance between the artery wall and the veins in the TVC. Increased semen quality was associated with increased testicular volume and scrotal subcutaneous (SQT) temperature gradient, and with decreased scrotal surface and testicular temperatures. Increased sperm production was associated with increased testicular artery volume, testicular volume, and SQT temperature gradient, and with decreased testicular artery wall thickness, scrotal circumference (SC), and scrotal surface, testicular subtunic, and epididymal temperatures. In conclusion, morphology of the TVC may contribute to the greater resistance of B. indicus bulls to high ambient temperatures by conferring a better testicular blood supply and by facilitating heat transfer between the testicular artery and veins. Testicular thermoregulation was associated with opposing scrotal and testicular subtunic temperatures gradients only in crossbred and B. taurus bulls. Scrotal, TVC, and testicular morphology influence testicular thermoregulatory capability and were associated with differences in semen quality and sperm production.


Subject(s)
Body Temperature Regulation , Cattle/physiology , Semen/physiology , Spermatogenesis , Testis/physiology , Animals , Arteries/anatomy & histology , Arteries/physiology , Body Temperature , Epididymis/physiology , Hybridization, Genetic , Male , Orchiectomy , Scrotum/anatomy & histology , Scrotum/physiology , Species Specificity , Testis/anatomy & histology , Testis/blood supply , Veins/anatomy & histology
3.
Anim Reprod Sci ; 79(1-2): 1-15, 2003 Nov 20.
Article in English | MEDLINE | ID: mdl-12853175

ABSTRACT

The objectives of the present study were to evaluate the effects of scrotal insulation on sperm production, semen quality, and testicular echotexture in Bos indicus and Bos indicus x Bos taurus crossbred bulls. In one experiment, B. indicus bulls (n=12) were allocated to control and whole-scrotum insulation groups, while in a second experiment, crossbred bulls (n=21) were allocated into control, whole-scrotum, and scrotal-neck insulation groups. Insulation was applied for 4 days (start of insulation = Day 0) and semen collection and testicular ultrasonographic examinations were performed twice weekly until Day 35. Sperm concentration and total sperm output during the post-insulation period were greater in control groups, but significant differences were observed only in B. indicus bulls. Overall, sperm motility in scrotal-insulated B. indicus bulls was lower (P<0.05) than in the control group. After whole-scrotum insulation in crossbred bulls, sperm motility was lower (P<0.05) than pre-insulation levels between Days 21 and 31, and lower than control levels on Day 24. The proportion of normal sperm after whole-scrotum insulation was lower than pre-insulation and control values from Day 11 to the end of the experiment in B. indicus bulls (P<0.05 from Days 14 to 21 and on Day 27), and from Days 14 to 25 in crossbred bulls (P<0.05 on Days 14 and 18). Insulation of the scrotal neck in crossbred bulls did not significantly affect semen quality. Loose sperm heads (Day 11), midpiece defects (Days 11 and 14), and acrosome defects (Days 27 and 31) increased (P<0.05) in insulated B. indicus bulls, while proximal cytoplasmic droplets (Days 14, 18 and 27 in B. indicus; Days 24 and 27 in crossbred bulls) and sperm vacuoles (Days 18 and 21 in B. indicus; Day 18 in crossbred bulls) increased (P<0.05) in whole-scrotum insulation groups in both experiments. There was considerable variation among bulls in the incidence of specific sperm defects. The timing of appearance of sperm defects after insulation provided insights into the pathogenesis of specific abnormalities. Neither whole-scrotum nor scrotal-neck insulation affected testicular echotexture in either experiment. In conclusion, whole-scrotum insulation resulted in decreased sperm production and semen quality in B. indicus and B. indicus x B. taurus bulls, but those changes were not associated with changes in testicular echotexture.


Subject(s)
Body Temperature , Cattle/physiology , Scrotum/physiology , Spermatogenesis , Spermatozoa/physiology , Testis/diagnostic imaging , Animals , Crosses, Genetic , Cytoplasm/ultrastructure , Male , Sperm Count , Sperm Motility , Spermatozoa/ultrastructure , Ultrasonography , Vacuoles/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL