Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 10(21): e2300921, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37166044

ABSTRACT

Over the past decades, superconducting qubits have emerged as one of the leading hardware platforms for realizing a quantum processor. Consequently, researchers have made significant effort to understand the loss channels that limit the coherence times of superconducting qubits. A major source of loss has been attributed to two level systems that are present at the material interfaces. It is recently shown that replacing the metal in the capacitor of a transmon with tantalum yields record relaxation and coherence times for superconducting qubits, motivating a detailed study of the tantalum surface. In this work, the chemical profile of the surface of tantalum films grown on c-plane sapphire using variable energy X-ray photoelectron spectroscopy (VEXPS) is studied. The different oxidation states of tantalum that are present in the native oxide resulting from exposure to air are identified, and their distribution through the depth of the film is measured. Furthermore, it is shown how the volume and depth distribution of these tantalum oxidation states can be altered by various chemical treatments. Correlating these measurements with detailed measurements of quantum devices may elucidate the underlying microscopic sources of loss.

2.
Sci Rep ; 11(1): 14756, 2021 07 20.
Article in English | MEDLINE | ID: mdl-34285272

ABSTRACT

Like other experimental techniques, X-ray photon correlation spectroscopy is subject to various kinds of noise. Random and correlated fluctuations and heterogeneities can be present in a two-time correlation function and obscure the information about the intrinsic dynamics of a sample. Simultaneously addressing the disparate origins of noise in the experimental data is challenging. We propose a computational approach for improving the signal-to-noise ratio in two-time correlation functions that is based on convolutional neural network encoder-decoder (CNN-ED) models. Such models extract features from an image via convolutional layers, project them to a low dimensional space and then reconstruct a clean image from this reduced representation via transposed convolutional layers. Not only are ED models a general tool for random noise removal, but their application to low signal-to-noise data can enhance the data's quantitative usage since they are able to learn the functional form of the signal. We demonstrate that the CNN-ED models trained on real-world experimental data help to effectively extract equilibrium dynamics' parameters from two-time correlation functions, containing statistical noise and dynamic heterogeneities. Strategies for optimizing the models' performance and their applicability limits are discussed.

4.
Phys Rev Lett ; 127(27): 275301, 2021 Dec 31.
Article in English | MEDLINE | ID: mdl-35061416

ABSTRACT

Understanding the formation and dynamics of charge and spin-ordered states in low-dimensional transition metal oxide materials is crucial to understanding unconventional high-temperature superconductivity. La_{2-x}Sr_{x}NiO_{4+δ} (LSNO) has attracted much attention due to its interesting spin dynamics. Recent x-ray photon correlation spectroscopy studies have revealed slow dynamics of the spin order (SO) stripes in LSNO. Here, we applied resonant soft x-ray ptychography to map the spatial distribution of the SO stripe domain inhomogeneity in real space. The reconstructed images show the SO domains are spatially anisotropic, in agreement with previous diffraction studies. For the SO stripe domains, it is found that the correlation lengths along different directions are strongly coupled in space. Surprisingly, fluctuations were observed in the real space amplitude signal, rather than the phase or position. We attribute the observed slow dynamics of the stripe domains in LSNO to thermal fluctuations of the SO domain boundaries.

5.
J Phys Condens Matter ; 32(14): 144001, 2020 Apr 03.
Article in English | MEDLINE | ID: mdl-31703223

ABSTRACT

Ru M3-edge resonant inelastic x-ray scattering (RIXS) measurements of [Formula: see text] with 27 meV resolution reveals a spin-orbit exciton without noticeable splitting. We extract values for the spin-orbit coupling constant ([Formula: see text] meV) and trigonal distortion field energy ([Formula: see text] meV) which support the [Formula: see text] nature of [Formula: see text]. We demonstrate the feasibility of M-edge RIXS for 4d systems, which allows ultra high-resolution RIXS of 4d systems until instrumentation for L-edge RIXS improves.

6.
Langmuir ; 26(11): 8113-21, 2010 Jun 01.
Article in English | MEDLINE | ID: mdl-20180572

ABSTRACT

The wetting behavior of ethylene adsorbed on MgO(100) was investigated from 83-135 K using high resolution volumetric adsorption isotherms. The results are compared to ethylene adsorption on graphite, a prototype adsorption system, in an effort to gain further insight into the forces that drive the observed film growth. Layering transitions for ethylene on MgO(100) are observed below the bulk triple point of ethylene (T = 104.0 K). The formation of three discrete adlayers is observed on the MgO(100) surface; onset of the second and third layers occurs at 79.2 +/- 1.3 K and 98.3 +/- 0.9 K, respectively. Thermodynamic quantities such as differential enthalpy and entropy, heat of adsorption, and isosteric heat of adsorption are determined and compared to the previously published values for ethylene on graphite. The average area occupied by a ethylene molecule on MgO(100) is 22.6 +/- 1.1 A2 molecule(-1). The locations of two phase transitions are identified (i.e., layer critical temperatures at T(c2)(n=1) at 108.6 +/- 1.7 K and T(c2)(n=2) at 116.5 +/- 1.2 K) and a phase diagram is proposed. Preliminary neutron diffraction measurements reveal evidence of a monolayer solid with a lattice constant of approximately 4.2 A. High resolution INS measurements show that the onset to dynamical motion and monolayer melting take place at approximately 35 K and approximately 65 K, respectively. The data reported here exhibit a striking similarity to ethylene on graphite which suggests that molecule-molecule interactions play an important role in determining the physical properties and growth of molecularly thin ethylene films.

SELECTION OF CITATIONS
SEARCH DETAIL
...