Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 14(6)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38540001

ABSTRACT

After hatching, sea turtles leave the nest and disperse into the ocean. Many years later, they return to their natal coastlines. The period between their leaving and their returning to natal areas, known as the "Lost Years", is poorly understood. Satellite tracking studies aimed at studying the "Lost Years" are challenging due to the small size and prolonged dispersal phases of young individuals. Here, we summarize preliminary findings about the performance of prototype microsatellite tags deployed over a three-year period on 160 neonate to small juvenile sea turtles from four species released in the North Atlantic Ocean. We provide an overview of results analyzing tag performance with metrics to investigate transmission characteristics and causes of tag failure. Our results reveal that, despite certain unfavorable transmission features, overall tag performance was satisfactory. However, most track durations were shorter than those observed on individuals of similar size in other studies and did not allow for detailed analyses of trajectories and turtle behavior. Our study further suggests that tracking durations are correlated with the targeted species, highlighting a lack of robustness against some neritic behaviors. Unprecedented diving data obtained for neonate sea turtles in this study suggest that the vertical behaviors of early juveniles are already too strenuous for these miniaturized tags. Our findings will help to inform the biologging research community, showcasing recent technological advances for the species and life stages within our study.

2.
Conserv Biol ; 37(5): e14114, 2023 10.
Article in English | MEDLINE | ID: mdl-37204012

ABSTRACT

Conservation of migratory species exhibiting wide-ranging and multidimensional behaviors is challenged by management efforts that only utilize horizontal movements or produce static spatial-temporal products. For the deep-diving, critically endangered eastern Pacific leatherback turtle, tools that predict where turtles have high risks of fisheries interactions are urgently needed to prevent further population decline. We incorporated horizontal-vertical movement model results with spatial-temporal kernel density estimates and threat data (gear-specific fishing) to develop monthly maps of spatial risk. Specifically, we applied multistate hidden Markov models to a biotelemetry data set (n = 28 leatherback tracks, 2004-2007). Tracks with dive information were used to characterize turtle behavior as belonging to 1 of 3 states (transiting, residential with mixed diving, and residential with deep diving). Recent fishing effort data from Global Fishing Watch were integrated with predicted behaviors and monthly space-use estimates to create maps of relative risk of turtle-fisheries interactions. Drifting (pelagic) longline fishing gear had the highest average monthly fishing effort in the study region, and risk indices showed this gear to also have the greatest potential for high-risk interactions with turtles in a residential, deep-diving behavioral state. Monthly relative risk surfaces for all gears and behaviors were added to South Pacific TurtleWatch (SPTW) (https://www.upwell.org/sptw), a dynamic management tool for this leatherback population. These modifications will refine SPTW's capability to provide important predictions of potential high-risk bycatch areas for turtles undertaking specific behaviors. Our results demonstrate how multidimensional movement data, spatial-temporal density estimates, and threat data can be used to create a unique conservation tool. These methods serve as a framework for incorporating behavior into similar tools for other aquatic, aerial, and terrestrial taxa with multidimensional movement behaviors.


Incorporación del comportamiento multidimensional a una herramienta de gestión de riesgos para una especie migratoria en peligro crítico Resumen La conservación de especies migratorias con comportamientos amplios y multidimensionales se enfrenta a los esfuerzos de gestión que sólo utilizan movimientos horizontales o que producen resultados espaciotemporales estáticos. La tortuga laúd, una especie de las profundidades en peligro crítico, necesita con urgencia herramientas que pronostiquen los lugares en donde las tortugas tienen mayor riesgo de interactuar con las pesquerías para prevenir una mayor declinación poblacional. Incorporamos los resultados de un modelo de movimiento horizontal-vertical a las estimaciones de la densidad del núcleo espaciotemporal y de los datos de amenaza (equipo de pesca específico) para desarrollar mapas mensuales del riesgo espacial. De manera más concreta, aplicamos modelos ocultos multiestado de Markov a un conjunto de datos de biotelemetría (n=28 rastros de tortugas laúd, 2004-2007). Usamos los rastros con información de inmersión para caracterizar el comportamiento de las tortugas como uno de tres estados: en tránsito, inmersión mixta o por residencia e inmersión profunda o por residencia. Integramos los datos recientes del esfuerzo de pesca tomados de Global Fishing Watch a los comportamientos pronosticados y las estimaciones del uso mensual del espacio para crear mapas del riesgo relativo de las interacciones tortuga-pesquería. La pesca con palangre de deriva (pelágica) tuvo el promedio mensual más alto de esfuerzo de pesca en la región de estudio. Los índices de riesgo indicaron que este equipo también tiene el potencial más elevado de interacciones de alto riesgo con las tortugas en estado residencial o de inmersión profunda. Añadimos los comportamientos y las superficies de riesgo relativo mensuales a South Pacific Turtle Watch (SPTW) (https://www.upwell.org/sptw), una herramienta dinámica para la gestión de esta población de laúdes. Estos cambios pulirán la capacidad de SPTW para proporcionar predicciones importantes de las áreas con potencial alto de riesgo de pesca accesoria para las tortugas con comportamientos específicos. Nuestros resultados demuestran cómo los datos de movimiento multidimensional, las estimaciones de densidad espaciotemporal y los datos de amenaza pueden ser usados para crear una herramienta única de conservación. Estos métodos sirven como marco para incorporar el comportamiento a herramientas similares para otros taxones acuáticos, aéreos y terrestres con comportamientos multidimensionales.


Subject(s)
Conservation of Natural Resources , Turtles , Animals , Conservation of Natural Resources/methods , Risk Management , Fisheries , Animal Migration , Endangered Species
3.
Animals (Basel) ; 13(7)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37048474

ABSTRACT

Juveniles of marine species, such as sea turtles, are often understudied in movement ecology. To determine dispersal patterns and release effects, we released 40 satellite-tagged juvenile head-started green turtles (Chelonia mydas, 1-4 years) from two separate locations (January and July 2023) off the coast of the Cayman Islands. A statistical model and vector plots were used to determine drivers of turtle directional swimming persistence and the role of ocean current direction. More than half (N = 22) effectively dispersed in 6-22 days from the islands to surrounding areas. The January turtles radiated out (185-1138 km) in distinct directions in contrast to the northward dispersal of the July turtles (27-396 km). Statistical results and vector plots supported that daily swimming persistence increased towards the end of tracks and near coastal regions, with turtles largely swimming in opposition to ocean currents. These results demonstrate that captive-reared juvenile greens have the ability to successfully navigate towards key coastal developmental habitats. Differences in dispersal (January vs. July) further support the importance of release timing and location. Our results inform conservation of the recovering Caymanian green turtles and we advise on how our methods can be improved and modified for future sea turtle and juvenile movement ecology studies.

4.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Article in English | MEDLINE | ID: mdl-34155147

ABSTRACT

Antibody-drug conjugates (ADCs) have emerged as valuable targeted anticancer therapeutics with at least 11 approved therapies and over 80 advancing through clinical trials. Enediyne DNA-damaging payloads represented by the flagship of this family of antitumor agents, N-acetyl calicheamicin [Formula: see text], have a proven success track record. However, they pose a significant synthetic challenge in the development and optimization of linker drugs. We have recently reported a streamlined total synthesis of uncialamycin, another representative of the enediyne class of compounds, with compelling synthetic accessibility. Here we report the synthesis and evaluation of uncialamycin ADCs featuring a variety of cleavable and noncleavable linkers. We have discovered that uncialamycin ADCs display a strong bystander killing effect and are highly selective and cytotoxic in vitro and in vivo.


Subject(s)
Anthraquinones/pharmacology , Bystander Effect/drug effects , Immunoconjugates/pharmacology , Animals , Anthraquinones/chemistry , Cell Death/drug effects , Cell Line, Tumor , Humans , Immunoconjugates/chemistry , Mice, Inbred NOD , Mice, SCID , Tumor Burden/drug effects
5.
J Am Chem Soc ; 142(29): 12890-12899, 2020 07 22.
Article in English | MEDLINE | ID: mdl-32662641

ABSTRACT

Our previous studies with shishijimicin A resulted in the total synthesis of this scarce marine natural product and a number of its simpler analogues endowed with picomolar potencies against certain cancer cell lines. Herein, we describe the design, synthesis, and biological evaluation of four linker-drugs, anticipating the construction of antibody-drug conjugates (ADCs) as the ultimate goal of this research program. Using a common payload, the assembly of these linker-drugs utilized different linkers and attachment points, providing opportunities to probe the optimal molecular design of the intended ADCs as targeted cancer therapies. In the course of ADC generation and in vitro evaluation, we identified two linker-drugs with a promising in vitro plasma stability profile and excellent targeted cytotoxicity and specificity. Conjugation of shishijimicin A enediyne payloads through their phenolic moiety represents a novel approach to enediyne ADC creation, while the pharmacological profiles of at least two of the generated ADCs compare well with the profiles of the corresponding clinically approved ADC Kadcyla.


Subject(s)
Antineoplastic Agents/pharmacology , Carbolines/pharmacology , Disaccharides/pharmacology , Enediynes/pharmacology , Immunoconjugates/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Carbolines/chemical synthesis , Carbolines/chemistry , Cell Survival/drug effects , Disaccharides/chemical synthesis , Disaccharides/chemistry , Drug Design , Enediynes/chemical synthesis , Enediynes/chemistry , HEK293 Cells , Humans , Immunoconjugates/chemistry , Molecular Structure
6.
J Org Chem ; 85(11): 6872-6877, 2020 Jun 05.
Article in English | MEDLINE | ID: mdl-32397713

ABSTRACT

Herein, we report the use of fluorescence anisotropy decay for measuring the rotation of six shape-persistent molecular rotors with central naphthalene (2), anthracene (3a, 3b, and 3c), tetracene (4), and pentacene (5) rotators axially linked by triple bonds to bulky trialkylsilyl groups of different sizes. Steady-state and time-resolved polarization measurements carried out in mineral oil confirmed that the vibrationally resolved lowest-energy absorption bands are characterized by a transition dipole moment oriented along the short acene axes, in the direction of the alkyne linkers. Fluorescence lifetimes increased significantly with increasing acene size and moderately with a decrease in the size of the trialkylsilyl group. The fluorescence anisotropy decay for all compounds in mineral oil with a viscosity of ca. 21.6 cP at 40 °C was completed within the fluorescence lifetime, so that the rotational time constants could be obtained via their rotational correlation times, which increased with silyl protecting group size rather than acene size, indicating that polarization decay is determined by tumbling of the molecular rotor about the long acene axis. These results suggest that monitoring the rotational motion of bis(silylethynyl)acenes in restricted media should be possible for media with viscosity values on the order of 21.6 cP or greater.

7.
Photochem Photobiol Sci ; 17(6): 741-749, 2018 Jun 13.
Article in English | MEDLINE | ID: mdl-29796517

ABSTRACT

Nanosecond transient absorption spectroscopy was used to study the photochemical ring-opening reaction for a 6-nitroindolinospiropyran (SP1) in solution and in nanocrystalline (NC) suspension at 298 K. We measured the kinetics in argon purged and air saturated acetonitrile and found that the presence of oxygen affected two out of the three components of the kinetic decay at 440 nm. These are assigned to the triplet excited states of the Z- and E-merocyanines (3Z-MC* and 3E-MC*). In contrast, a long-lived growth component at 550 nm and the decay of a band centered at 590 nm showed no dependence on oxygen and are assigned, respectively, to the ground state Z- and E-merocyanines (Z-MC0 and E-MC0). Laser flash photolysis studies performed in NC suspensions initially showed a very broad, featureless absorption spectrum that decayed uniformly for ca. 70 ns before revealing a more defined spectrum that persisted for greater than 4 ms and is consistent with a mixture of the more stable Z- and E-MC0 structures. We performed quantum mechanical calculations on the interconversion of E- and Z-MCs on the S0 and S1 potential energy surfaces. The computed UV-vis spectra for a scan along the Z → E interconversion reaction coordinate show substantial absorptivity from 300-600 nm, which suggests that the broad, featureless transient absorption spectrum results from the contribution of the transition structure and other high-energy species during the Z to E isomerization.

SELECTION OF CITATIONS
SEARCH DETAIL
...