Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Int J Biol Sci ; 18(14): 5221-5229, 2022.
Article in English | MEDLINE | ID: mdl-36147477

ABSTRACT

Cancer is the second leading cause of mortality after cardiovascular diseases in the United States. Chemotherapy is widely used to treat cancers. Since the development of drug resistance is a major contributor towards the failure of chemotherapeutic regimens, efforts have been made to develop novel inhibitors that can combat drug resistance and sensitize cancer cells to chemotherapy. Here we investigated the anti-cancer effects of MG53, a TRIM-family protein known for its membrane repair functions. We found that rhMG53 reduced cellular proliferation of both parental and ABCB1 overexpressing colorectal carcinoma cells. Exogenous rhMG53 protein entered SW620 and SW620/AD300 cells without altering the expression of ABCB1 protein. In a mouse SW620/AD300 xenograft model, the combination of rhMG53 and doxorubicin treatment significantly inhibited tumor growth without any apparent weight loss or hematological toxicity in the animals. Our data show that MG53 has anti-proliferative function on colorectal carcinoma, regardless of their nature to drug-resistance. This is important as it supports the broader value for rhMG53 as a potential adjuvant therapeutic to treat cancers even when drug-resistance develops.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1 , Colorectal Neoplasms , Membrane Proteins , Animals , Cell Line, Tumor , Cell Proliferation/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Disease Models, Animal , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Drug Resistance, Neoplasm , Humans , Membrane Proteins/therapeutic use , Mice , Recombinant Proteins/therapeutic use , Tripartite Motif Proteins
2.
Cancers (Basel) ; 12(2)2020 Feb 21.
Article in English | MEDLINE | ID: mdl-32098067

ABSTRACT

Although the judicious use of anticancer drugs that target one or more receptor tyrosine kinases constitutes an effective strategy to attenuate tumor growth, drug resistance is commonly encountered in cancer patients. The ATP-binding cassette transporters are one of the major contributors to the development of multidrug resistance as their overexpression significantly decreases the intracellular concentration and thus, the efficacy of certain anticancer drugs. Therefore, the development of treatment strategies that would not be susceptible to efflux or excretion by specific ABC transporters could overcome resistance to treatment. Here, we investigated the anticancer efficacy of saporin, a ribosome-inactivating protein. Since saporin has poor permeability across the cell membrane, it was encapsulated in a lipid-based nanoparticle system (EC16-1) that effectively delivered the formulation (EC16-1/saporin) intracellularly and produced anti-cancer efficacy. EC16-1/saporin, at nanomolar concentrations, significantly inhibited the cellular proliferation of parental and ABCB1- and ABCG2-overexpressing cancer cells. EC16-1/saporin did not significantly alter the subcellular localization of ABCB1 and ABCG2. In addition, EC16-1/saporin induced apoptosis in parental and ABCB1- and ABCG2-overexpressing cancer cells. In a murine model system, EC16-1/saporin significantly inhibited the tumor growth in mice xenografted with parental and ABCB1- and ABCG2-overexpressing cancer cells. Our findings suggest that the EC16-1/saporin combination could potentially be a novel therapeutic treatment in patients with parental or ABCB1- and ABCG2-positive drug-resistant cancers.

3.
Cancer Lett ; 472: 132-141, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31837444

ABSTRACT

Chronic Myeloid Leukemia (CML) is a myeloproliferative neoplasm primarily due to the presence of the BCR-ABL fusion gene that produces the constitutively active protein, BCR-ABL. Imatinib, a BCR-ABL-targeted drug, is a first-line drug for the treatment of CML. Resistance to imatinib occurs as a result of mutations in the BCR-ABL kinase domains. In this study, we evaluated S116836, a novel BCR-ABL inhibitor, for its anti-cancer efficacy in the wild-type (WT) and T315I mutant BCR-ABL. S116836 was efficacious in BaF3 cells with WT or T315I mutated BCR-ABL genotypes. S116836 inhibits the phosphorylation of BCR-ABL and its downstream signaling in BaF3/WT and BaF3/T315I cells. Mechanistically, S116836 arrests the cells in the G0/G1 phase of cell cycle, induces apoptosis, increases ROS production, and decreases GSH production in BaF3/WT and BaF3/T315I cells. Moreover, in mouse tumor xenografts, S116836 significantly inhibits the growth and volume of tumors expressing the WT or T315I mutant BCR-ABL without causing significant cardiotoxicity. Overall, our results indicate that S116836 significantly inhibits the imatinib-resistant T315I BCR-ABL mutation and could be a novel drug candidate for treating imatinib-resistant CML patients.


Subject(s)
Benzamides/pharmacology , Drug Resistance, Neoplasm/genetics , Fusion Proteins, bcr-abl/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Pyrimidines/pharmacology , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Fusion Proteins, bcr-abl/antagonists & inhibitors , Humans , Imatinib Mesylate/pharmacology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Mice , Mutation/genetics , Protein Kinase Inhibitors/pharmacology , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
4.
J Med Chem ; 61(3): 834-864, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29251928

ABSTRACT

A novel set of 64 analogues based on our lead compound 1 was designed and synthesized with an initial objective of understanding the structural requirements of ligands binding to a highly perplexing substrate-binding site of P-glycoprotein (P-gp) and their effect on modulating the ATPase function of the efflux pump. Compound 1, a stimulator of P-gp ATPase activity, was transformed to ATPase inhibitory compounds 39, 53, and 109. The ATPase inhibition by these compounds was predominantly contributed by the presence of a cyclohexyl group in lieu of the 2-aminobenzophenone moiety of 1. The 4,4-difluorocyclohexyl analogues, 53 and 109, inhibited the photolabeling by [125I]-IAAP, with IC50 values of 0.1 and 0.76 µM, respectively. Selected compounds were shown to reverse paclitaxel resistance in HEK293 cells overexpressing P-gp and were selective toward P-gp over CYP3A4. Induced-fit docking highlighted a plausible binding pattern of inhibitory compounds in the putative-binding pocket of P-gp. The current study underscores the stringent requirement by P-gp to bind to chemically similar molecules.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Amino Acids/chemistry , Peptidomimetics/chemical synthesis , Peptidomimetics/pharmacology , Thiazoles/chemistry , Adenosine Triphosphatases/antagonists & inhibitors , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/metabolism , Binding Sites/drug effects , Chemistry Techniques, Synthetic , Humans , Molecular Docking Simulation , Peptidomimetics/chemistry , Peptidomimetics/metabolism , Protein Conformation , Structure-Activity Relationship
5.
Pharmacol Res ; 119: 89-98, 2017 05.
Article in English | MEDLINE | ID: mdl-28131876

ABSTRACT

Cabozantinib (XL184) is a small molecule tyrosine kinase receptor inhibitor, which targets c-Met and VEGFR2. Cabozantinib has been approved by the Food and Drug Administration to treat advanced medullary thyroid cancer and renal cell carcinoma. In the present study, we evaluated the ability of cabozantinib to modulate the function of the ATP-binding cassette subfamily G member 2 (ABCG2) by sensitizing cells that are resistant to ABCG2 substrate antineoplastic drugs. We used a drug-selected resistant cell line H460/MX20 and three ABCG2 stable transfected cell lines ABCG2-482-R2, ABCG2-482-G2, and ABCG2-482-T7, which overexpress ABCG2. Cabozantinib, at non-toxic concentrations (3 or 5µM), sensitized the ABCG2-overexpressing cells to mitoxantrone, SN-38, and topotecan. Our results indicate that cabozantinib reverses ABCG2-mediated multidrug resistance by antagonizing the drug efflux function of the ABCG2 transporter instead of downregulating its expression. The molecular docking analysis indicates that cabozantinib binds to the drug-binding site of the ABCG2 transporter. Overall, our findings demonstrate that cabozantinib inhibits the ABCG2 transporter function and consequently enhances the effect of the antineoplastic agents that are substrates of ABCG2. Cabozantinib may be a useful agent in anticancer treatment regimens for patients who are resistant to ABCG2 substrate drugs.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Anilides/pharmacology , Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm/drug effects , Neoplasms/drug therapy , Pyridines/pharmacology , Cell Line, Tumor , HEK293 Cells , Humans , Mitoxantrone/pharmacology , Molecular Docking Simulation , Neoplasms/metabolism , Topoisomerase I Inhibitors/pharmacology , Topotecan/pharmacology
6.
Cancers (Basel) ; 7(4): 2360-71, 2015 Dec 03.
Article in English | MEDLINE | ID: mdl-26633515

ABSTRACT

Paclitaxel (Taxol(®)) is a member of the taxane class of anticancer drugs and one of the most common chemotherapeutic agents used against many forms of cancer. Paclitaxel is a microtubule-stabilizer that selectively arrests cells in the G2/M phase of the cell cycle, and found to induce cytotoxicity in a time and concentration-dependent manner. Paclitaxel has been embedded in novel drug formulations, including albumin and polymeric micelle nanoparticles, and applied to many anticancer treatment regimens due to its mechanism of action and radiation sensitizing effects. Though paclitaxel is a major anticancer drug which has been used for many years in clinical treatments, its therapeutic efficacy can be limited by common encumbrances faced by anticancer drugs. These encumbrances include toxicities, de novo refraction, and acquired multidrug resistance (MDR). This article will give a current and comprehensive review of paclitaxel, beginning with its unique history and pharmacology, explore its mechanisms of drug resistance and influence in combination with radiation therapy, while highlighting current treatment regimens, formulations, and new discoveries.

7.
J Proteomics Bioinform ; 6(12): 302-312, 2013 Dec 30.
Article in English | MEDLINE | ID: mdl-24737927

ABSTRACT

Nickel (Ni) compounds are widely used in industrial and commercial products including household and cooking utensils, jewelry, dental appliances and implants. Occupational exposure to nickel is associated with an increased risk for lung and nasal cancers, is the most common cause of contact dermatitis and has an extensive effect on the immune system. The purpose of this study was two-fold: (i) to evaluate immune response to the occupational exposure to nickel measured by the presence of anti-glycan antibodies (AGA) using a new biomarker-discovery platform based on printed glycan arrays (PGA), and (ii) to evaluate and compile a sequence of bioinformatics and statistical methods which are specifically relevant to PGA-derived information and to identification of putative "Ni toxicity signature". The PGAs are similar to DNA microarrays, but contain deposits of various carbohydrates (glycans) instead of spotted DNAs. The study uses data derived from a set of 89 plasma specimens and their corresponding demographic information. The study population includes three subgroups: subjects directly exposed to Nickel that work in a refinery, subjects environmentally exposed to Nickel that live in a city where the refinery is located and subjects that live in a remote location. The paper describes the following sequence of nine data processing and analysis steps: (1) Analysis of inter-array reproducibility based on benchmark sera; (2) Analysis of intra-array reproducibility; (3) Screening of data - rejecting glycans which result in low intra-class correlation coefficient (ICC), high coefficient of variation and low fluorescent intensity; (4) Analysis of inter-slide bias and choice of data normalization technique; (5) Determination of discriminatory subsamples based on multiple bootstrap tests; (6) Determination of the optimal signature size (cardinality of selected feature set) based on multiple cross-validation tests; (7) Identification of the top discriminatory glycans and their individual performance based on nonparametric univariate feature selection; (8) Determination of multivariate performance of combined glycans; (9) Establishing the statistical significance of multivariate performance of combined glycan signature. The above analysis steps have delivered the following results: inter-array reproducibility ρ=0.920 ± 0.030; intra-array reproducibility ρ=0.929 ± 0.025; 249 out of 380 glycans passed the screening at ICC>80%, glycans in selected signature have ICC ≥ 88.7%; optimal signature size (after quantile normalization)=3; individual significance for the signature glycans p=0.00015 to 0.00164, individual AUC values 0.870 to 0.815; observed combined performance for three glycans AUC=0.966, p=0.005, CI=[0.757, 0947]; specifity=94.4%, sensitivity=88.9%; predictive (cross-validated) AUC value 0.836.

8.
Am J Addict ; 21(2): 126-9, 2012.
Article in English | MEDLINE | ID: mdl-22332855

ABSTRACT

Numerous studies demonstrate the efficacy of contingency management (CM) for improving patient outcomes, yet it is rarely used in treatment settings due to the high cost of implementation. This quasi-experimental study (N = 52) examined the effect of a low-cost "Fishbowl" CM intervention on attendance/retention in an early intervention adolescent substance abuse program. The CM group attended significantly more sessions compared to the control group. Furthermore, the CM intervention costs $3.27 per patient per session. Our findings support the use of low-cost CM to improve adolescent attendance in clinical settings.


Subject(s)
Patient Compliance , Reinforcement, Psychology , Substance Abuse Treatment Centers/economics , Substance Abuse Treatment Centers/methods , Substance-Related Disorders/therapy , Adolescent , Child , Female , Health Care Costs/statistics & numerical data , Humans , Male , Motivation , Pilot Projects
SELECTION OF CITATIONS
SEARCH DETAIL
...