Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Transpl Int ; 35: 10329, 2022.
Article in English | MEDLINE | ID: mdl-35592446

ABSTRACT

While great progress has been made in transplantation medicine, long-term graft failure and serious side effects still pose a challenge in kidney transplantation. Effective and safe long-term treatments are needed. Therefore, evidence of the lasting benefit-risk of novel therapies is required. Demonstrating superiority of novel therapies is unlikely via conventional randomized controlled trials, as long-term follow-up in large sample sizes pose statistical and operational challenges. Furthermore, endpoints generally accepted in short-term clinical trials need to be translated to real-world (RW) care settings, enabling robust assessments of novel treatments. Hence, there is an evidence gap that calls for innovative clinical trial designs, with RW evidence (RWE) providing an opportunity to facilitate longitudinal transplant research with timely translation to clinical practice. Nonetheless, the current RWE landscape shows considerable heterogeneity, with few registries capturing detailed data to support the establishment of new endpoints. The main recommendations by leading scientists in the field are increased collaboration between registries for data harmonization and leveraging the development of technology innovations for data sharing under high privacy standards. This will aid the development of clinically meaningful endpoints and data models, enabling future long-term research and ultimately establish optimal long-term outcomes for transplant patients.


Subject(s)
Kidney Transplantation , Pragmatic Clinical Trials as Topic , Risk Assessment , Clinical Trials as Topic/standards , Graft Survival , Humans , Kidney Transplantation/adverse effects , Pragmatic Clinical Trials as Topic/standards , Research Design/standards
2.
Metabolism ; 76: 1-10, 2017 11.
Article in English | MEDLINE | ID: mdl-28987235

ABSTRACT

OBJECTIVE: Chronic heart failure (CHF) is related with exercise intolerance and impaired nitric oxide (NO) production, which can lead to several functional capacity alterations. Considering the possible superiority of aerobic interval training compared to continuous training and the capacity of l-arginine to restore the NO pathway, the aim of the present study was to investigate whether these treatments are beneficial to exercise capacity, muscle mass preservation and hemodynamic, inflammatory and oxidative stress parameters in CHF rats. METHODS: Thirty-eight male Wistar rats post 6weeks of myocardial infarction (MI) surgery were randomly assigned into 6 CHF groups: sedentary (SED, n=6); SED+Arg (n=7); ACT (n=8); ACT+Arg (n=5); AIT (n=7); AIT+Arg (n=5). Exercise test capacity (ETC) was performed pre and post 8weeks of intervention. Supplemented rats received Arg (1g/kg) by oral gavage (7×/week). Exercise training was performed on a rat treadmill (5×/week). Hemodynamic variables, tissue collection, congestion, inflammatory cytokines, and oxidative parameters were evaluated at the end of protocols. RESULTS: All trained groups showed a superior exercise capacity compared to SED groups on the post-intervention test (p<0.0001). Pulmonary congestion was attenuated in AIT and AIT+Arg compared with the SED group (p<0.05). Left ventricular end-diastolic pressure (LVEDP) was lower in ACT+Arg, AIT, and AIT+Arg groups than SED group (p<0.05). Association of AIT with Arg supplementation was able to improve hemodynamic responses (left ventricular systolic pressure (LVSP), systolic blood pressure (SBP), +dP/dtmax, and -dP/dtmax (p<0.05), likewise, decrease muscular and renal lipid peroxidation and tumor necrosis factor (TNF)-α, and increase interleukin (IL)-10/TNF-α plasmatic levels (p<0.01). Groups that associated aerobic exercise with Arg supplementation (ACT+Arg and AIT+Arg) revealed higher gastrocnemius mass compared to the SED group (p<0.01). CONCLUSIONS: Both aerobic training protocols were capable to improve aerobic capacity, and the association with Arg supplementation was important to attenuate muscle loss. Moreover, interval training associated with Arg supplementation elicits greater improvements in hemodynamic parameters, contributing to reduction in pulmonary congestion, and demonstrated particular responses in the inflammatory profile and in the antioxidant status.


Subject(s)
Arginine/pharmacology , Exercise Tolerance/physiology , Heart Failure/physiopathology , High-Intensity Interval Training/methods , Oxidative Stress/drug effects , Physical Conditioning, Animal/physiology , Animals , Blood Pressure/drug effects , Blood Pressure/physiology , Cytokines/blood , Disease Models, Animal , Exercise Test , Exercise Tolerance/drug effects , Heart Failure/metabolism , Hemodynamics/drug effects , Hemodynamics/physiology , Male , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL