Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Environ Contam Toxicol ; 242: 105-151, 2017.
Article in English | MEDLINE | ID: mdl-27718007

ABSTRACT

Potato is one of the most important crops, after maize, rice and wheat. Its global production is about 300 million tons per year and is constantly increasing. It grows in temperate climate and is used as a source of starch, food, and in breeding industry.Potato cultivation requires application of numerous agro-technical products, including pesticides, since it can be affected by insects, weeds, fungi, and viruses. In the European Union the most frequently used pesticides in potato cultivations check are: thiamethoxam, lambda-cyhalothrin and deltamethrin (insecticides), rimsulfuron (herbicide) and metalaxyl (fungicide).Application of pesticides improves crop efficiency, however, as pesticides are not totally selective, it affects also non-target organisms. Moreover, the agrochemicals may accumulate in crops and, as a consequence, negatively influence the quality of food products and consumer health. Additional risks of plant protection products are related to their derivatives, that are created both in the environment (soil, water) and in plant organisms, since many of these compounds may exhibit toxic effects.This article is devoted to the degradation processes of pesticides used in potato crop protection. Attention is also paid to the toxicity of both parent compounds and their degradation products for living organisms, including humans. Information about the level of pesticide contamination in the environment (water, soil) and accumulation level in edible plants complement the current knowledge about the risks associated with widespread use of thiamethoxam, lambda-cyhalothrin and deltamethrin, rimsulfuron and metalaxyl in potato cultivation.


Subject(s)
Biodegradation, Environmental , Crops, Agricultural , Pesticides/chemistry , Solanum tuberosum
2.
Biomarkers ; 11(4): 291-305, 2006.
Article in English | MEDLINE | ID: mdl-16908437

ABSTRACT

Evidence has accumulated that herbicides in the environment present a significant health hazard to the population. Therefore, the levels of heavily used substances such as atrazine and simazine and their metabolites need to be regularly assessed. The objective was to develop a rapid and simple tube ELISA procedure suitable for use in field studies and non-specialized laboratories. The antisera used were polyclonal antibodies raised in sheep against atrazine or simazine amido caproic acid conjugated to bovine serum albumin. The antibodies were first used to construct a two-step competitive ELISA procedure in 96-well microtitre plates. The 96-well format was then adapted to a coated-tube enzyme immunoassay, by immobilization of hapten-gelatine conjugates on polystyrene tubes. This enabled the colour to be read using a basic spectrophotometer. Soil samples were collected from agricultural and non-agricultural sites in Poland. Atrazine and simazine were extracted by liquid extraction from soil and assayed by tube ELISA. In addition, the samples were extracted by solid-phase extraction before analysis by HPLC. The immunoassays and chemical analysis were carried out by different individuals who were unaware of each other's results, which were then compared at the end of the study. Correlation of the two methods was excellent, with R=98.7 and 81.3 for atrazine and simazine, respectively. The immunoassay yielded the same order of results without having to perform solid-phase extraction before analysis. The study has demonstrated that the simple antigen-coated tube assay provides a cost-effective and valuable screening test. Comparison with the more elaborate, heavily labour-intensive HPLC analysis demonstrated that the results obtained by the simpler enzyme-immunoassay tests were within the same order.


Subject(s)
Biomarkers/analysis , Chromatography, High Pressure Liquid/methods , Herbicides/analysis , Herbicides/pharmacology , Immunoenzyme Techniques/methods , Atrazine/chemistry , Biomarkers/chemistry , Dose-Response Relationship, Drug , Haptens/chemistry , Polystyrenes/chemistry , Reproducibility of Results , Simazine/chemistry , Soil , Spectrophotometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...