ABSTRACT
Noroviruses are a leading cause of endemic and epidemic acute gastroenteritis in all age groups. However, in Latin America, there are limited and updated data regarding circulating genotypes. The aim of this study was to assess the prevalence and genetic diversity of norovirus outbreaks in Argentina from 2013 to 2018. Stool samples from 29 acute gastroenteritis (AGE) outbreaks were available for viral testing. Norovirus was detected in samples from 18 (62.1%) outbreaks (2 GI and 16 GII). Both GI outbreaks were typed as GI.6[P11] whereas 10 different GII genotypes were detected, in which GII.4 viruses were the most frequently detected (29.4%, associated with GII.P31 and GII.P16) followed by GII.1[P33] and GII.6[P7] (17.6% each). Like GII.4 viruses, GII.2 viruses were also detected in association with different polymerases (GII.P2 and GII.P16). Our findings underscore the importance of dual RNA-dependent RNA polymerase-VP1 typing since recombinant strains with new polymerase sequences emerge frequently suggesting a possible role in improved fitness of these viruses. This study represents the most recent multi-year assessment of the molecular epidemiology of norovirus strains associated with AGE outbreaks in Argentina. Molecular surveillance of norovirus has to be considered to monitor possible changes in dominant genotypes which may assist to inform the formulation of future vaccines.
Subject(s)
Caliciviridae Infections/epidemiology , Gastroenteritis/epidemiology , Norovirus/genetics , Argentina/epidemiology , Disease Outbreaks , Gastroenteritis/virology , Genotype , Humans , Molecular Epidemiology , Norovirus/classification , Phylogeny , RNA, Viral/geneticsABSTRACT
BACKGROUND: Nicaragua was the first developing nation to implement routine immunization with the pentavalent rotavirus vaccine (RV5). In this RV5-immunized population, understanding infectious etiologies of childhood diarrhea is necessary to direct diarrhea treatment and prevention efforts. METHODS: We followed a population-based sample of children <5 years in León, Nicaragua for diarrhea episodes through household visits. Information was obtained on RV5 history and sociodemographics. Stool samples collected during diarrhea episodes and among healthy children underwent laboratory analysis for viral, bacterial and parasitic enteropathogens. Detection frequency and incidence of each enteropathogen was calculated. RESULTS: The 826 children in the cohort experienced 677 diarrhea episodes during 607.5 child-years of exposure time (1.1 episodes per child-year). At least 1 enteropathogen was detected among 61.1% of the 337 diarrheal stools collected. The most common enteropathogens among diarrheal stools were: norovirus (20.4%), sapovirus (16.6%), enteropathogenic Escherichia coli (11.3%), Entamoeba histolytica/dispar (8.3%), Giardia lamblia (8.0%) and enterotoxigenic E. coli (7.7%), with rotavirus detected among 5.3% of diarrheal stools. Enteropathogenic Escherichia coli and enterotoxigenic E. coli were frequently detected among stools from healthy children. Among children with diarrhea, norovirus was more commonly detected among younger children (< 2 years) and G. lamblia was more commonly detected among older children (2-4 years). The mean age of rotavirus detection was 34.6 months. CONCLUSIONS: In this Central American community after RV5 introduction, rotavirus was not commonly detected among children with diarrhea. Prevention and appropriate management of norovirus and sapovirus should be considered to further reduce the burden of diarrheal disease.