Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Plant Biol ; 24(1): 578, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38890566

ABSTRACT

BACKGROUND: Wheat (Triticum aestivum L.) is one of the most important cereal crop species worldwide, but its growth and development are adversely influenced by drought stress. However, the application of trace elements is known to improve plant physiology under water-limited conditions. In this study, the effects of drought stress on wheat plants were investigated, with a focus on potential mitigation by foliar application of selenium nanoparticles (Se(np)) and sodium selenate (Na2SeO4). The experiment was conducted in a net house using a completely randomized design with four replications. The treatments involved three levels of drought stress (mild, moderate, and severe) started at 30 days after sowing (DAS), with foliar sprays of Se(np) and Se (both 25 µM) initiated at 27 DAS and repeated 4 times at 7-day intervals until 55 DAS. RESULTS: Drought stress significantly reduced plant growth, whereas Se(np) and Se sprays enhanced it. Drought stress induced chlorophyll degradation, increased malondialdehyde and hydrogen peroxide levels, impaired membrane stability, and caused electrolyte leakage. Severe drought stress reduced the levels of antioxidants (e.g., proline, ascorbate, and glutathione by 4.18-fold, 80%, and 45%) and the activities of antioxidant enzymes (ascorbate peroxidase, dehydroascorbate reductase, and others). Conversely, treatment with Se(np) and Se restored these parameters, for example, 1.23-fold higher total chlorophyll content with Se(np) treatment, 26% higher APX activity with Se treatment, 15% lower electrolyte leakage with Se treatment in wheat plants under severe drought stress. This Se-associated enhancement facilitated rapid scavenging of reactive oxygen species and reduced methylglyoxal toxicity, thereby diminishing oxidative stress and positively affecting the morphophysiological and biochemical responses of the plants under drought. CONCLUSIONS: Drought-stressed wheat plants exhibited reductions in physiological processes, including water uptake and photosynthetic activity. However, Se(np) and Se applied at 25 µM mitigated the detrimental effects of drought. The application of Se(np) was notably more effective than the application of Se in mitigating drought stress, indicating the potential of the application of Se(np) as a sustainable agricultural practice under water-limited conditions.


Subject(s)
Nanoparticles , Oxidative Stress , Reactive Oxygen Species , Selenium , Triticum , Triticum/drug effects , Triticum/physiology , Triticum/metabolism , Triticum/growth & development , Oxidative Stress/drug effects , Selenium/pharmacology , Reactive Oxygen Species/metabolism , Droughts , Chlorophyll/metabolism , Antioxidants/metabolism , Dehydration , Hydrogen Peroxide/metabolism
2.
Plants (Basel) ; 12(11)2023 May 30.
Article in English | MEDLINE | ID: mdl-37299147

ABSTRACT

Growth habits are among the essential adaptive traits acted upon by evolution during plant speciation. They have brought remarkable changes in the morphology and physiology of plants. Inflorescence architecture varies greatly between wild relatives and cultivars of pigeon pea. The present study isolated the CcTFL1 (Terminal Flowering Locus 1) locus using six varieties showing determinate (DT) and indeterminate (IDT) growth habits. Multiple alignments of CcTFL1 sequences revealed the presence of InDel, which describes a 10 bp deletion in DT varieties. At the same time, IDT varieties showed no deletion. InDel altered the translation start point in DT varieties, resulting in the shortening of exon 1. This InDel was validated in ten varieties of cultivated species and three wild relatives differing in growth habits. The predicted protein structure showed the absence of 27 amino acids in DT varieties, which was reflected in mutant CcTFL1 by the absence of two α-helices, a connecting loop, and shortened ß-sheet. By subsequent motif analysis, it was found that the wild-type protein had a phosphorylation site for protein kinase C, but the mutant protein did not. In silico analysis revealed that the InDel-driven deletion of amino acids spans, containing a phosphorylation site for kinase protein, may have resulted in the non-functionality of the CcTFL1 protein, rendering the determinate growth habit. This characterization of the CcTFL1 locus could be used to modulate growth habits through genome editing.

3.
Front Plant Sci ; 13: 1022167, 2022.
Article in English | MEDLINE | ID: mdl-36578327

ABSTRACT

Low-temperature stress (LTS) drastically affects vegetative and reproductive growth in fruit crops leading to a gross reduction in the yield and loss in product quality. Among the fruit crops, temperate fruits, during the period of evolution, have developed the mechanism of tolerance, i.e., adaptive capability to chilling and freezing when exposed to LTS. However, tropical and sub-tropical fruit crops are most vulnerable to LTS. As a result, fruit crops respond to LTS by inducing the expression of LTS related genes, which is for climatic acclimatization. The activation of the stress-responsive gene leads to changes in physiological and biochemical mechanisms such as photosynthesis, chlorophyll biosynthesis, respiration, membrane composition changes, alteration in protein synthesis, increased antioxidant activity, altered levels of metabolites, and signaling pathways that enhance their tolerance/resistance and alleviate the damage caused due to LTS and chilling injury. The gene induction mechanism has been investigated extensively in the model crop Arabidopsis and several winter kinds of cereal. The ICE1 (inducer of C-repeat binding factor expression 1) and the CBF (C-repeat binding factor) transcriptional cascade are involved in transcriptional control. The functions of various CBFs and aquaporin genes were well studied in crop plants and their role in multiple stresses including cold stresses is deciphered. In addition, tissue nutrients and plant growth regulators like ABA, ethylene, jasmonic acid etc., also play a significant role in alleviating the LTS and chilling injury in fruit crops. However, these physiological, biochemical and molecular understanding of LTS tolerance/resistance are restricted to few of the temperate and tropical fruit crops. Therefore, a better understanding of cold tolerance's underlying physio-biochemical and molecular components in fruit crops is required under open and simulated LTS. The understanding of LTS tolerance/resistance mechanism will lay the foundation for tailoring the novel fruit genotypes for successful crop production under erratic weather conditions.

4.
Plants (Basel) ; 11(23)2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36501242

ABSTRACT

The indiscriminate use of pesticides in agricultural commodities has become a global health concern. Various household methods are employed to remove pesticide residues from agricultural commodities, e.g., water and ozone. Many ozone-based commercial pesticide removal machines are available in the market for the general public. The current study compares the pesticide removal efficiency of ozone-based washing of fruits and vegetables to simple tap water through commercially available machines and its health risk assessment to different age groups of consumers. The okra and green chili fruits were treated with acetamiprid and ethion as foliar application at the fruiting stage, using the recommended dose (RD) and double to the recommended dose (2RD), respectively. A modified QuEChERS-based pesticide extraction method was verified for its accuracy, precision, linearity, and sensitivity. The treated samples were washed with tap and ozonated water at different intervals, i.e., 3, 8, and 10 min using a commercial food purifier. Washing with ozonized water for 3 min recorded the maximum removal of acetamiprid and ethion from okra and chili fruits. Further, the risk quotient values (RQ) obtained were lower than one at both doses. Thus, washing vegetables with ozonized water for 3 min ensures vegetables are safer for general consumption without any health risk to Indian consumers.

5.
Cells ; 10(10)2021 09 25.
Article in English | MEDLINE | ID: mdl-34685517

ABSTRACT

Global food security for a growing population with finite resources is often challenged by multiple, simultaneously occurring on-farm abiotic stresses (i.e., drought, salinity, low and high temperature, waterlogging, metal toxicity, etc.) due to climatic uncertainties and variability. Breeding for multiple stress tolerance is a long-term solution, though developing multiple-stress-tolerant crop varieties is still a challenge. Generation of reactive oxygen species in plant cells is a common response under diverse multiple abiotic stresses which play dual role of signaling molecules or damaging agents depending on concentration. Thus, a delicate balance of reactive oxygen species generation under stress may improve crop health, which depends on the natural antioxidant defense system of the plants. Biostimulants represent a promising type of environment-friendly formulation based on natural products that are frequently used exogenously to enhance abiotic stress tolerance. In this review, we illustrate the potential of diverse biostimulants on the activity of the antioxidant defense system of major crop plants under stress conditions and their other roles in the management of abiotic stresses. Biostimulants have the potential to overcome oxidative stress, though their wider applicability is tightly regulated by dose, crop growth stage, variety and type of biostimulants. However, these limitations can be overcome with the understanding of biostimulants' interaction with ROS signaling and the antioxidant defense system of the plants.


Subject(s)
Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Stress, Physiological/physiology , Antioxidants/metabolism , Droughts , Plants/metabolism , Salinity , Signal Transduction/drug effects
6.
Physiol Plant ; 172(2): 1007-1015, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33432608

ABSTRACT

Global agriculture is challenged with achieving sustainable food security while the climate changes and the threat of drought increases. Much of the research attention has focused on above-ground plant responses with an aim to improve drought resistance. The hidden half, that is, the root system belowground, is receiving increasing attention as the interface of the plant with the soil. Because roots are a sensing organ for nutrients and moisture, we speculate that crop root system traits can be managed using smart nutrient application in order to increase drought resistance. Roots are known to be influenced both by their underlying genetics and also by responses to the environment, termed root plasticity. Though very little is known about the combined effect of water and nutrients on root plasticity, we explore the possibilities of root system manipulation by nutrient application. We compare the effects of different water or nutrient levels on root plasticity and its genetic regulation, with a focus on how this may affect drought resistance. We propose four primary mechanisms through which smart nutrient management can optimize root traits for drought resistance: (1) overall plant vigor, (2) increased root allocation, (3) influence specific root traits, and (4) use smart placement and timing to encourage deep rooting. In the longer term, we envision that beneficial root traits, including plasticity, could be bred into efficient varieties and combined with advanced precision management of water and nutrients to achieve agricultural sustainability.


Subject(s)
Droughts , Plant Roots , Nutrients , Soil , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...