Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
iScience ; 26(12): 108416, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38077141

ABSTRACT

Cocaine and amphetamine-regulated transcript (CART) is expressed in pancreatic islet cells and neuronal elements. We have previously established insulinotropic actions of CART in human and rodent islets. The receptor for CART in the pancreatic beta cells is unidentified. We used RNA sequencing of Cartpt knockdown (KD) INS-1 832/13 cells and identified GPR162 as the most Cartpt-regulated receptor. We therefore tested if GPR162 mediates the effects of CART in beta cells. Binding of CART to GPR162 was established using proximity ligation assay, radioactive binding, and co-immunoprecipitation, and KD of Gpr162 mRNA caused reduced binding. Gpr162 KD cells had blunted CARTp-induced exocytosis, and reduced CARTp-induced insulin secretion. Furthermore, we identified a hitherto undescribed GPR162-dependent role of CART as a regulator of cytoskeletal arrangement. Thus, our findings provide mechanistic insight into the effect of CART on insulin secretion and show that GPR162 is the CART receptor in beta cells.

2.
Proc Natl Acad Sci U S A ; 120(25): e2220664120, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37307445

ABSTRACT

Alzheimer's disease is a neurodegenerative condition which involves heavy neuronal cell death linked to oligomers formed during the aggregation process of the amyloid ß peptide 42 (Aß42). The aggregation of Aß42 involves both primary and secondary nucleation. Secondary nucleation dominates the generation of oligomers and involves the formation of new aggregates from monomers on catalytic fibril surfaces. Understanding the molecular mechanism of secondary nucleation may be crucial in developing a targeted cure. Here, the self-seeded aggregation of WT Aß42 is studied using direct stochastic optical reconstruction microscopy (dSTORM) with separate fluorophores in seed fibrils and monomers. Seeded aggregation proceeds faster than nonseeded reactions because the fibrils act as catalysts. The dSTORM experiments show that monomers grow into relatively large aggregates on fibril surfaces along the length of fibrils before detaching, thus providing a direct observation of secondary nucleation and growth along the sides of fibrils. The experiments were repeated for cross-seeded reactions of the WT Aß42 monomer with mutant Aß42 fibrils that do not catalyze the nucleation of WT monomers. While the monomers are observed by dSTORM to interact with noncognate fibril surfaces, we fail to notice any growth along such fibril surfaces. This implies that the failure to nucleate on the cognate seeds is not a lack of monomer association but more likely a lack of structural conversion. Our findings support a templating role for secondary nucleation, which can only take place if the monomers can copy the underlying parent structure without steric clashes or other repulsive interactions between nucleating monomers.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Humans , Peptide Fragments , Catalysis
3.
J Clin Invest ; 133(4)2023 02 15.
Article in English | MEDLINE | ID: mdl-36656641

ABSTRACT

Type 2 diabetes (T2D) is caused by insufficient insulin secretion from pancreatic ß cells. To identify candidate genes contributing to T2D pathophysiology, we studied human pancreatic islets from approximately 300 individuals. We found 395 differentially expressed genes (DEGs) in islets from individuals with T2D, including, to our knowledge, novel (OPRD1, PAX5, TET1) and previously identified (CHL1, GLRA1, IAPP) candidates. A third of the identified expression changes in islets may predispose to diabetes, as expression of these genes associated with HbA1c in individuals not previously diagnosed with T2D. Most DEGs were expressed in human ß cells, based on single-cell RNA-Seq data. Additionally, DEGs displayed alterations in open chromatin and associated with T2D SNPs. Mouse KO strains demonstrated that the identified T2D-associated candidate genes regulate glucose homeostasis and body composition in vivo. Functional validation showed that mimicking T2D-associated changes for OPRD1, PAX5, and SLC2A2 impaired insulin secretion. Impairments in Pax5-overexpressing ß cells were due to severe mitochondrial dysfunction. Finally, we discovered PAX5 as a potential transcriptional regulator of many T2D-associated DEGs in human islets. Overall, we have identified molecular alterations in human pancreatic islets that contribute to ß cell dysfunction in T2D pathophysiology.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Islets of Langerhans , Humans , Mice , Animals , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Insulin Secretion/genetics , Insulin/genetics , Insulin/metabolism , Islets of Langerhans/metabolism , Insulin-Secreting Cells/metabolism , Mixed Function Oxygenases/metabolism , Proto-Oncogene Proteins/metabolism , PAX5 Transcription Factor/metabolism
4.
Cell Calcium ; 108: 102669, 2022 12.
Article in English | MEDLINE | ID: mdl-36347081

ABSTRACT

Voltage-gated Ca2+ (CaV) channel dysfunction leads to impaired glucose-stimulated insulin secretion in pancreatic ß-cells and contributes to the development of type-2 diabetes (T2D). The role of the low-voltage gated T-type CaV channels in ß-cells remains obscure. Here we have measured the global expression of T-type CaV3.2 channels in human islets and found that gene expression of CACNA1H, encoding CaV3.2, is negatively correlated with HbA1c in human donors, and positively correlated with islet insulin gene expression as well as secretion capacity in isolated human islets. Silencing or pharmacological blockade of CaV3.2 attenuates glucose-stimulated cytosolic Ca2+ signaling, membrane potential, and insulin release. Moreover, the endoplasmic reticulum (ER) Ca2+ store depletion is also impaired in CaV3.2-silenced ß-cells. The linkage between T-type (CaV3.2) and L-type CaV channels is further identified by the finding that the intracellular Ca2+ signaling conducted by CaV3.2 is highly dependent on the activation of L-type CaV channels. In addition, CACNA1H expression is significantly associated with the islet predominant L-type CACNA1C (CaV1.2) and CACNA1D (CaV1.3) genes in human pancreatic islets. In conclusion, our data suggest the essential functions of the T-type CaV3.2 subunit as a mediator of ß-cell Ca2+ signaling and membrane potential needed for insulin secretion, and in connection with L-type CaV channels.


Subject(s)
Calcium Channels, T-Type , Insulin Secretion , Insulin-Secreting Cells , Humans , Calcium/metabolism , Calcium Channels, L-Type/genetics , Calcium Channels, L-Type/metabolism , Calcium Channels, T-Type/genetics , Calcium Channels, T-Type/metabolism , Glucose/metabolism , Insulin/metabolism , Insulin-Secreting Cells/metabolism
5.
Nat Commun ; 13(1): 4237, 2022 07 22.
Article in English | MEDLINE | ID: mdl-35869052

ABSTRACT

Glucose-induced insulin secretion depends on ß-cell electrical activity. Inhibition of ATP-regulated potassium (KATP) channels is a key event in this process. However, KATP channel closure alone is not sufficient to induce ß-cell electrical activity; activation of a depolarizing membrane current is also required. Here we examine the role of the mechanosensor ion channel PIEZO1 in this process. Yoda1, a specific PIEZO1 agonist, activates a small membrane current and thereby triggers ß-cell electrical activity with resultant stimulation of Ca2+-influx and insulin secretion. Conversely, the PIEZO1 antagonist GsMTx4 reduces glucose-induced Ca2+-signaling, electrical activity and insulin secretion. Yet, PIEZO1 expression is elevated in islets from human donors with type-2 diabetes (T2D) and a rodent T2D model (db/db mouse), in which insulin secretion is reduced. This paradox is resolved by our finding that PIEZO1 translocates from the plasmalemma into the nucleus (where it cannot influence the membrane potential of the ß-cell) under experimental conditions emulating T2D (high glucose culture). ß-cell-specific Piezo1-knockout mice show impaired glucose tolerance in vivo and reduced glucose-induced insulin secretion, ß-cell electrical activity and Ca2+ elevation in vitro. These results implicate mechanotransduction and activation of PIEZO1, via intracellular accumulation of glucose metabolites, as an important physiological regulator of insulin secretion.


Subject(s)
Diabetes Mellitus, Type 2 , Glucose , Adenosine Triphosphate/metabolism , Animals , Calcium/metabolism , Glucose/metabolism , Glucose/pharmacology , Humans , Insulin/metabolism , Insulin Secretion , Ion Channels/genetics , Ion Channels/metabolism , Mechanotransduction, Cellular , Mice
6.
Acta Physiol (Oxf) ; 236(1): e13857, 2022 09.
Article in English | MEDLINE | ID: mdl-35753051

ABSTRACT

AIM: SYT11 and SYT13, two calcium-insensitive synaptotagmins, are downregulated in islets from type 2 diabetic donors, but their function in insulin secretion is unknown. To address this, we investigated the physiological role of these two synaptotagmins in insulin-secreting cells. METHODS: Correlations between gene expression levels were performed using previously described RNA-seq data on islets from 188 human donors. SiRNA knockdown was performed in EndoC-ßH1 and INS-1 832/13 cells. Insulin secretion was measured with ELISA. Patch-clamp was used for single-cell electrophysiology. Confocal microscopy was used to determine intracellular localization. RESULTS: Human islet expression of the transcription factor PDX1 was positively correlated with SYT11 (p = 2.4e-10 ) and SYT13 (p < 2.2e-16 ). Syt11 and Syt13 both co-localized with insulin, indicating their localization in insulin granules. Downregulation of Syt11 in INS-1 832/13 cells (siSYT11) resulted in increased basal and glucose-induced insulin secretion. Downregulation of Syt13 (siSYT13) decreased insulin secretion induced by glucose and K+ . Interestingly, the cAMP-raising agent forskolin was unable to enhance insulin secretion in siSYT13 cells. There was no difference in insulin content, exocytosis, or voltage-gated Ca2+ currents in the two models. Double knockdown of Syt11 and Syt13 (DKD) resembled the results in siSYT13 cells. CONCLUSION: SYT11 and SYT13 have similar localization and transcriptional regulation, but they regulate insulin secretion differentially. While downregulation of SYT11 might be a compensatory mechanism in type-2 diabetes, downregulation of SYT13 reduces the insulin secretory response and overrules the compensatory regulation of SYT11 in a way that could aggravate the disease.


Subject(s)
Calcium , Insulin-Secreting Cells , Calcium/metabolism , Glucose/metabolism , Humans , Insulin/metabolism , Insulin Secretion , Insulin-Secreting Cells/metabolism , Synaptotagmins/genetics , Synaptotagmins/metabolism
7.
Curr Issues Mol Biol ; 44(3): 1115-1126, 2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35723296

ABSTRACT

Preclinical studies of COVID-19 mRNA vaccine BNT162b2, developed by Pfizer and BioNTech, showed reversible hepatic effects in animals that received the BNT162b2 injection. Furthermore, a recent study showed that SARS-CoV-2 RNA can be reverse-transcribed and integrated into the genome of human cells. In this study, we investigated the effect of BNT162b2 on the human liver cell line Huh7 in vitro. Huh7 cells were exposed to BNT162b2, and quantitative PCR was performed on RNA extracted from the cells. We detected high levels of BNT162b2 in Huh7 cells and changes in gene expression of long interspersed nuclear element-1 (LINE-1), which is an endogenous reverse transcriptase. Immunohistochemistry using antibody binding to LINE-1 open reading frame-1 RNA-binding protein (ORFp1) on Huh7 cells treated with BNT162b2 indicated increased nucleus distribution of LINE-1. PCR on genomic DNA of Huh7 cells exposed to BNT162b2 amplified the DNA sequence unique to BNT162b2. Our results indicate a fast up-take of BNT162b2 into human liver cell line Huh7, leading to changes in LINE-1 expression and distribution. We also show that BNT162b2 mRNA is reverse transcribed intracellularly into DNA in as fast as 6 h upon BNT162b2 exposure.

8.
Int J Mol Sci ; 23(3)2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35163577

ABSTRACT

Fluorescence-based single molecule techniques provide important tools towards understanding the molecular mechanism of complex neurodegenerative diseases. This requires efficient covalent attachment of fluorophores. Here we create a series of cysteine mutants (S8C, Y10C, S26C, V40C, and A42C) of Aß42, involved in Alzheimer's disease, based on exposed positions in the fibril structure and label them with the Alexa-fluorophores using maleimide chemistry. Direct stochastic optical reconstruction microscopy imaging shows that all the labelled mutants form fibrils that can be detected by virtue of Alexa fluorescence. Aggregation assays and cryo-electron micrographs establish that the careful choice of labelling position minimizes the perturbation of the aggregation process and fibril structure. Peptides labelled at the N-terminal region, S8C and Y10C, form fibrils independently and with wild-type. Peptides labelled at the fibril core surface, S26C, V40C and A42C, form fibrils only in mixture with wild-type peptide. This can be understood on the basis of a recent fibril model, in which S26, V40 and A42 are surface exposed in two out of four monomers per fibril plane. We provide a palette of fluorescently labelled Aß42 peptides that can be used to gain understanding of the complex mechanisms of Aß42 self-assembly and help to develop a more targeted approach to cure the disease.


Subject(s)
Amyloid beta-Peptides/chemistry , Fluorescent Dyes/chemistry , Models, Molecular , Peptide Fragments/chemistry , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Humans , Peptide Fragments/metabolism
9.
Nat Commun ; 11(1): 5611, 2020 11 05.
Article in English | MEDLINE | ID: mdl-33154349

ABSTRACT

Fine-tuning of insulin release from pancreatic ß-cells is essential to maintain blood glucose homeostasis. Here, we report that insulin secretion is regulated by a circular RNA containing the lariat sequence of the second intron of the insulin gene. Silencing of this intronic circular RNA in pancreatic islets leads to a decrease in the expression of key components of the secretory machinery of ß-cells, resulting in impaired glucose- or KCl-induced insulin release and calcium signaling. The effect of the circular RNA is exerted at the transcriptional level and involves an interaction with the RNA-binding protein TAR DNA-binding protein 43 kDa (TDP-43). The level of this circularized intron is reduced in the islets of rodent diabetes models and of type 2 diabetic patients, possibly explaining their impaired secretory capacity. The study of this and other circular RNAs helps understanding ß-cell dysfunction under diabetes conditions, and the etiology of this common metabolic disorder.


Subject(s)
Insulin Secretion/genetics , Insulin/genetics , Introns , RNA, Circular/metabolism , Animals , Calcium Signaling , Cell Nucleus/metabolism , DNA-Binding Proteins/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Gene Expression Regulation , Humans , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Mice , RNA, Circular/genetics , Rats
10.
Mol Cell Endocrinol ; 502: 110673, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31805307

ABSTRACT

The transcription factor TCF7L2 remains the most important diabetes gene identified to date and genetic risk carriers exhibit lower insulin secretion. We show that Tcf7l2 regulates the auxiliary subunit of voltage-gated Ca2+ channels, Cacna2d1 gene/α2δ-1 protein levels. Furthermore, suppression of α2δ-1 decreased voltage-gated Ca2+ currents and high glucose/depolarization-evoked Ca2+ signaling which mimicked the effect of silencing of Tcf7l2. This appears to be the result of impaired voltage-gated Ca2+ channel trafficking to the plasma membrane, as Cav1.2 channels accumulated in the recycling endosomes after α2δ-1 suppression, in clonal as well as primary rodent beta-cells. This impaired the capacity for glucose-induced insulin secretion in Cacna2d1-silenced cells. Overexpression of α2δ-1 increased high-glucose/K+-stimulated insulin secretion. Furthermore, overexpression of α2δ-1 in Tcf7l2-silenced cells rescued the Tcf7l2-dependent impairment of Ca2+ signaling, but not the reduced insulin secretion. Taken together, these data clarify the connection between Tcf7l2, α2δ-1 in Ca2+-dependent insulin secretion.


Subject(s)
Calcium Channels, L-Type/genetics , Calcium Channels, L-Type/metabolism , Insulin-Secreting Cells/metabolism , Transcription Factor 7-Like 2 Protein/metabolism , Animals , Calcium Signaling , Cell Line , Cell Membrane/metabolism , Endosomes/metabolism , Glucose/adverse effects , Insulin/metabolism , Insulin-Secreting Cells/cytology , Rats
11.
Commun Biol ; 2: 106, 2019.
Article in English | MEDLINE | ID: mdl-30911681

ABSTRACT

Voltage-gated Ca2+ (CaV) channels trigger glucose-induced insulin secretion in pancreatic beta-cell and their dysfunction increases diabetes risk. These heteromeric complexes include the main subunit alpha1, and the accessory ones, including subunit gamma that remains unexplored. Here, we demonstrate that CaV gamma subunit 4 (CaVγ4) is downregulated in islets from human donors with diabetes, diabetic Goto-Kakizaki (GK) rats, as well as under conditions of gluco-/lipotoxic stress. Reduction of CaVγ4 expression results in decreased expression of L-type CaV1.2 and CaV1.3, thereby suppressing voltage-gated Ca2+ entry and glucose stimulated insulin exocytosis. The most important finding is that CaVγ4 expression is controlled by the transcription factor responsible for beta-cell specification, MafA, as verified by chromatin immunoprecipitation and experiments in beta-cell specific MafA knockout mice (MafA Δßcell ). Taken together, these findings suggest that CaVγ4 is necessary for maintaining a functional differentiated beta-cell phenotype. Treatment aiming at restoring CaVγ4 may help to restore beta-cell function in diabetes.


Subject(s)
Calcium Channels, N-Type/genetics , Calcium Channels, N-Type/metabolism , Gene Expression Regulation , Insulin-Secreting Cells/metabolism , Maf Transcription Factors, Large/metabolism , Animals , Biomarkers , Calcium/metabolism , Calcium Signaling , Gene Expression , Glucose/metabolism , Humans , Insulin Secretion , Mice , Mice, Knockout , Models, Biological , Rats
12.
J Endocrinol ; 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30721137

ABSTRACT

Cystic fibrosis-related diabetes (CFRD) is a common complication for patients with cystic fibrosis (CF), a disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR). The cause of CFRD is unclear, but a commonly observed reduction in first-phase insulin secretion suggests defects at the beta cell level. Here we aimed to examine beta- and alpha-cell function in the Cftrtm1EUR/F508del mouse model (C57BL/6J), which carries the most common human mutation in CFTR, the F508del mutation. CFTR expression, beta cell mass, insulin granule distribution, hormone secretion and single cell capacitance changes were evaluated using islets (or beta cells) from F508del mice and age-matched wild-type mice aged 7-10 weeks. Granular pH was measured with DND-189 fluorescence. Serum glucose, insulin and glucagon levels were measured in vivo, and glucose tolerance was assessed using IPGTT. We show increased secretion of proinsulin and concomitant reduced secretion of C-peptide in islets from F508del mice compared to WT mice. Exocytosis and number of docked granules was reduced. We confirmed reduced granular pH by CFTR stimulation. We detected decreased pancreatic beta cell area, but unchanged beta cell number. Moreover, the F508del mutation caused failure to suppress glucagon secretion leading to hyperglucagonemia. In conclusion, F508del mice have beta cell defects resulting in 1) reduced number of docked insulin granules and reduced exocytosis, and 2) potential defective proinsulin cleavage and secretion of immature insulin. These observations provide insight into the functional role of CFTR in pancreatic islets and contribute to increased understanding of the pathogenesis of CFRD.

SELECTION OF CITATIONS
SEARCH DETAIL
...