Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(13)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37445885

ABSTRACT

Reeta is a popular late-maturing high-yielding rice variety recommended for cultivation in the eastern Indian states. The cultivar is highly sensitive to submergence stress. Phosphorus deficiency is an additional constraint for realizing high yield. The quantitative trait loci (QTLs), Sub1, for submergence and Pup1 for low phosphorus stress tolerance along with narrow-grained trait, GW5 were introgressed into the variety from the donor parent, Swarna-Sub1 through marker-assisted breeding. In addition, phenotypic selections for higher panicle weight, grain number, and spikelet fertility were performed in each segregating generation. Foreground selection detected the 3 target QTLs in 9, 8 and 7 progenies in the BC1F1, BC2F1, and BC3F1 generation, respectively. Recurrent parent's genome recovery was analyzed using 168 SSR polymorphic markers. The foreground analysis in 452 BC3F2 progenies showed five pyramided lines in homozygous condition for the target QTLs. No donor fragment drag was noticed in the Sub1 and GW5 QTLs carrier while a segmentwas observed in the Pup1 carrier chromosome. The developed lines were higher yielding, had submergence, and had low phosphorus stress-tolerance alongwith similar to the recipient parent in the studied morpho-quality traits. A promising pyramided line is released in the name of Reeta-Panidhan (CR Dhan 413) for the flood-prone areas of Odisha state.


Subject(s)
Oryza , Quantitative Trait Loci , Oryza/genetics , Genetic Markers , Plant Breeding , Phosphorus
2.
Genes (Basel) ; 14(4)2023 04 12.
Article in English | MEDLINE | ID: mdl-37107660

ABSTRACT

Seed vigor is the key performance parameter of good quality seed. A panel was prepared by shortlisting genotypes from all the phenotypic groups representing seedling growth parameters from a total of 278 germplasm lines. A wide variation was observed for the traits in the population. The panel was classified into four genetic structure groups. Fixation indices indicated the existence of linkage disequilibrium in the population. A moderate to high level of diversity parameters was assessed using 143 SSR markers. Principal component, coordinate, neighbor-joining tree and cluster analyses showed subpopulations with a fair degree of correspondence with the growth parameters. Marker-trait association analysis detected eight novel QTLs, namely qAGR4.1, qAGR6.1, qAGR6.2 and qAGR8.1 for absolute growth rate (AGR); qRSG6.1, qRSG7.1 and qRSG8.1 for relative shoot growth (RSG); and qRGR11.1 for relative growth rate (RGR), as analyzed by GLM and MLM. The reported QTL for germination rate (GR), qGR4-1, was validated in this population. Additionally, QTLs present on chromosome 6 controlling RSG and AGR at 221 cM and RSG and AGR on chromosome 8 at 27 cM were detected as genetic hotspots for the parameters. The QTLs identified in the study will be useful for improvement of the seed vigor trait in rice.


Subject(s)
Oryza , Seedlings , Seedlings/genetics , Germination/genetics , Oryza/genetics , Quantitative Trait Loci/genetics , Genomics
3.
Biomolecules ; 13(2)2023 01 18.
Article in English | MEDLINE | ID: mdl-36830568

ABSTRACT

Ranidhan is a popular late-maturing rice variety of Odisha state, India. The farmers of the state suffer heavy loss in years with flash floods as the variety is sensitive to submergence. Bacterial blight (BB) disease is a major yield-limiting factor, and the variety is susceptible to the disease. BB resistance genes Xa21, xa13, and xa5, along with the Sub1 QTL, for submergence stress tolerance were transferred into the variety using marker-assisted backcross breeding approach. Foreground selection using direct and closely linked markers detected the progenies carrying all four target genes in the BC1F1, BC2F1, and BC3F1 generations, and the positive progenies carrying these genes with maximum similarity to the recipient parent, Ranidhan, were backcrossed into each segregating generation. Foreground selection in the BC1F1 generation progenies detected all target genes in 11 progenies. The progeny carrying all target genes and similar to the recipient parent in terms of phenotype was backcrossed, and a total of 321 BC2F1 seeds were produced. Ten progenies carried all target genes/QTL in the BC2F1 generation. Screening of the BC3F1 progenies using markers detected 12 plants carrying the target genes. A total of 1270 BC3F2 seeds were obtained from the best BC3F1 progeny. Foreground selection in the BC3F2 progenies detected four plants carrying the target genes in the homozygous condition. The bioassay of the pyramided lines conferred very high levels of resistance to the predominant isolates of bacterial blight pathogen. These BB pyramided lines were submergence-tolerant and similar to Ranidhan in 13 agro-morphologic and grain quality traits; hence, they are likely to be adopted by farmers.


Subject(s)
Bacterial Infections , Oryza , Genetic Markers , Oryza/genetics , Disease Resistance/genetics , DNA Shuffling , Plant Breeding
4.
PLoS One ; 17(7): e0267303, 2022.
Article in English | MEDLINE | ID: mdl-35881571

ABSTRACT

High seed vigour ensures good quality seed and higher productivity. Early seedling growth parameters indicate seed vigour in rice. Seed vigour via physiological growth parameters is a complex trait controlled by many quantitative trait loci. A panel was prepared representing a population of 274 rice landraces by including genotypes from all the phenotypic groups of sixseedling stage physiological parameters including germination % for association mapping. Wide variations for the six studiedtraits were observed in the population. The population was classified into 3 genetic groups. Fixation indices indicated the presence of linkage disequilibrium in the population. The population was classified into subpopulations and each subpopulation showed correspondence with the 6 physiological traits. A total of 5 reported QTLs viz., qGP8.1 for germination % (GP); qSVII2.1, qSVII6.1 and qSVII6.2 for seed vigour index II (SVII), and qRSR11.1 for root-shoot ratio (RSR) were validated in this mapping population. In addition, 13 QTLs regulating the physiological parameters such as qSVI 11.1 for seed vigour index I; qSVI11.1 and qSVI12.1 for seed vigour index II; qRRG10.1, qRRG8.1, qRRG8.2, qRRG6.1 and qRRG4.1 for rate of root growth (RRG); qRSR2.1, qRSR3.1 and qRSR5.1 for root-shoot ratio (RSR) while qGP6.2 and qGP6.3 for germination %were identified. Additionally, co-localization or co-inheritance of QTLs, qGP8.1 and qSVI8.1 for GP and SVI-1; qGP6.2 and qRRG6.1 for GP and RRG, and qSVI11.1 and qRSR11.1 for SVI and RSR were detected. The QTLs identified in this study will be useful for improvement of seed vigour trait in rice.


Subject(s)
Germination , Oryza , Genomics , Germination/genetics , Oryza/genetics , Quantitative Trait Loci/genetics , Seedlings , Seeds/genetics
5.
Plants (Basel) ; 11(11)2022 May 30.
Article in English | MEDLINE | ID: mdl-35684236

ABSTRACT

Because it is rich in antioxidant compounds, the staple food of rice provides many health benefits. Four antioxidant traits in rice grain, viz., catalase, CUPRAC, DPPH, FRAP and peroxidase, were mapped in a representative panel population containing 117 germplasm lines using 131 SSR markers through association mapping. Donor lines rich in multiple antioxidant properties were identified from the mapping population. The population was classified into three genetic groups and each group showed reasonable correspondence with the antioxidant traits. The presence of linkage disequilibrium in the population was confirmed from the estimated Fst values. A strong positive correlation of DPPH was established with TPC, FRAP and CUPRAC. A moderate to high mean gene diversity was observed in the panel population. Eleven significant marker-trait associations for antioxidant traits were mapped, namely, qACD2.1, qACD11.1 and qACD12.2 for DPPH; qCAT8.1 and qCAT11.1 for catalase; qFRAP11.1, qFRAP12.1 and qFRAP12.2 for FRAP; and qCUPRAC3.1, qCUPRAC11.1 and qCUPRA12.1 regulating CUPRAC. Co-localization of the QTLs for qACD11.1, qFRAP11.1 and qCUPRAC11.1 were detected, which may act as antioxidant hotspots regulating DPPH, FRAP and CUPRAC activities, respectively, while qACD12.2 and qFRAP12.1 remained close on the chromosome 12. These detected QTLs will be useful in antioxidant improvement programs in rice.

6.
BMC Genet ; 21(1): 76, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32664865

ABSTRACT

BACKGROUND: Drought during reproductive stage is among the main abiotic stresses responsible for drastic reduction of grain yield in rainfed rice. The genetic mechanism of reproductive stage drought tolerance is very complex. Many physiological and morphological traits are associated with this stress tolerance. Robust molecular markers are required for detection and incorporation of these correlated physiological traits into different superior genetic backgrounds. Identification of gene(s)/QTLs controlling reproductive stage drought tolerance and its deployment in rainfed rice improvement programs are very important. RESULTS: QTLs linked to physiological traits under reproductive stage drought tolerance were detected by using 190 F7 recombinant inbred lines (RIL) mapping population of CR 143-2-2 and Krishnahamsa. Wide variations were observed in the estimates of ten physiological traits studied under the drought stress. The RIL population was genotyped using the bulk- segregant analysis (BSA) approach. A total of 77 SSR polymorphic markers were obtained from the parental polymorphisms survey of 401 tested primers. QTL analysis using inclusive composite interval mapping detected a total of three QTLs for the physiological traits namely relative chlorophyll content (qRCC1.1), chlorophyll a (qCHLa1.1), and proline content (qPRO3.1) in the studied RIL population. The QTL, qPRO3.1 is found to be a novel one showing LOD value of 13.93 and phenotypic variance (PVE) of 78.19%. The QTL was located within the marker interval of RM22-RM517 on chromosome 3. Another novel QTL, qRCC1.1 was mapped on chromosome 1 at a distance of 142.8 cM and found to control relative chlorophyll content during terminal drought stress. A third novel QTL was detected in the population that controlled chlorophyll a content (qCHLa1.1) under the terminal stress period. The QTL was located on chromosome 1 at a distance of 81.8 cM and showed 64.5% phenotypic variation. CONCLUSIONS: The three novel QTLs, qRCC1.1, qCHLa1.1 and qPRO3.1 controlling relative chlorophyll content, chlorophyll a and proline content, respectively were identified in the mapping population derived from CR 143-2-2 and Krishnahamsa. These 3 QTLs will be useful for enhancement of terminal drought stress tolerance through marker-assisted breeding approach in rice.


Subject(s)
Dehydration/genetics , Droughts , Oryza/genetics , Quantitative Trait Loci , Water/physiology , Chlorophyll A/analysis , Chromosome Mapping , Chromosomes, Plant/genetics , Genotype , Phenotype
7.
PLoS One ; 14(12): e0214979, 2019.
Article in English | MEDLINE | ID: mdl-31846460

ABSTRACT

Reproductive stage drought stress is an important yield reducing factor in rainfed rice. Genetic mapping of morpho-physiological traits under the stress will help to develop cultivars suitable for drought prone environments through marker-assisted breeding (MAB). Though various yield QTLs under reproductive stage drought tolerance are available for MAB, but no robust markers controlling different morho-physiological traits are available for this stress tolerance. QTLs linked to morpho-physiological traits under drought stress were mapped by evaluating 190 F7 recombinant inbred lines (RIL) using bulk segregant analysis (BSA) strategy. Wide variations were observed in the RILs for eleven morpho-physiological traits involved during the stress. A total of 401 SSR primers were surveyed for parental polymorphism of which 77 were detected to be polymorphic. Inclusive composite interval mapping detected a total of five consistent QTLs controlling leaf rolling (qLR9.1), leaf drying (qLD9.1), harvest index (qHI9.1), spikelet fertility (qSF9.1) and relative water content (qRWC9.1) under reproductive stage drought stress. Another two non-allelic QTLs controlling leaf rolling (qLR8.1) and leaf drying (qLD12.1) were also detected to be linked and found to control the two traits. QTL controlling leaf rolling, qLR8.1 was validated in this mapping population and may be useful in MAB programs. Out of these five consistent QTLs, four (qLR9.1, qLD9.1, qHI9.1 and qRWC9.1) were detected to be novel QTLs and useful for MAB for improvement of reproductive stage drought tolerance in rice.


Subject(s)
Adaptation, Physiological/genetics , Oryza/genetics , Salt-Tolerant Plants/genetics , Chromosome Mapping/methods , Droughts , Genotype , Microsatellite Repeats/genetics , Phenotype , Plant Breeding/methods , Plant Leaves/genetics , Quantitative Trait Loci , Stress, Physiological/genetics
8.
PLoS One ; 11(8): e0160027, 2016.
Article in English | MEDLINE | ID: mdl-27494320

ABSTRACT

Rice exhibits enormous genetic diversity, population structure and molecular marker-traits associated with abiotic stress tolerance to high temperature stress. A set of breeding lines and landraces representing 240 germplasm lines were studied. Based on spikelet fertility percent under high temperature, tolerant genotypes were broadly classified into four classes. Genetic diversity indicated a moderate level of genetic base of the population for the trait studied. Wright's F statistic estimates showed a deviation of Hardy-Weinberg expectation in the population. The analysis of molecular variance revealed 25 percent variation between population, 61 percent among individuals and 14 percent within individuals in the set. The STRUCTURE analysis categorized the entire population into three sub-populations and suggested that most of the landraces in each sub-population had a common primary ancestor with few admix individuals. The composition of materials in the panel showed the presence of many QTLs representing the entire genome for the expression of tolerance. The strongly associated marker RM547 tagged with spikelet fertility under stress and the markers like RM228, RM205, RM247, RM242, INDEL3 and RM314 indirectly controlling the high temperature stress tolerance were detected through both mixed linear model and general linear model TASSEL analysis. These markers can be deployed as a resource for marker-assisted breeding program of high temperature stress tolerance.


Subject(s)
Genetic Variation , Oryza/genetics , Alleles , Cluster Analysis , DNA, Plant/isolation & purification , DNA, Plant/metabolism , Genetic Markers , Genotype , Oryza/growth & development , Oryza/metabolism , Phenotype , Plant Breeding , Plant Leaves/genetics , Plant Leaves/metabolism , Principal Component Analysis , Temperature , Thermotolerance
9.
C R Biol ; 338(10): 650-9, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26321658

ABSTRACT

Ninety lowland rice cultivars of the eastern region of India were collected and screened for submergence and water logging tolerance and further used for validating the efficiency of molecular markers and their combinations for submergence tolerance. Submergence tolerance and elongation ability of the tested genotypes were measured in screening tanks along with tolerant and susceptible checks. The genotypes FR13A, Khoda, CR Dhan 300, Savitri Sub1, IR64 Sub1, IC-568009 and IC-568842 exhibited high submergence tolerance may be used as donor in the breeding program. Landrace 'Khoda' showed tolerance to submergence with moderate elongation ability for adaption. Boitalpakhia, Gayatri, Atiranga, Aghonibora, Chakaakhi, Moti, IC-567993 and IC-568921 possessed both characters of moderate elongation ability and moderate tolerance to submergence. Both of these traits are required for lowland varieties of eastern India to survive under flash flood and accumulated stagnant water conditions. RM8300, Sub1A203, AEX, Sub1BC2 and Sub1C173 were employed for molecular screening to identify the submergence-tolerant genotypes. Sub1A203 was capable of differentiating the tolerant and susceptible genotypes into groups. RM8300 and Sub1BC2 could also differentiate the genotypes with inclusion of some susceptible genotypes. The AEX and Sub1C173 marker could not show discrimination among the genotypes with respect to the traits. Using Sub1A203+Sub1BC2 was better amongst the combinations studied. The results of the study indicated a trend toward a negative association of Sub1BC2 with submergence tolerance while AEX and Sub1C marker did not show any significant association. The donors identified can be useful as parental lines while the molecular markers can be used for marker-assisted breeding work.


Subject(s)
Adaptation, Physiological/genetics , Oryza/genetics , Alleles , Ecosystem , Floods , Genes, Plant , Genotype , Immersion , India , Multigene Family , Oryza/physiology , Phenotype , Phylogeny , Plant Breeding , Plant Shoots/growth & development , Rain
10.
Rice (N Y) ; 8(1): 51, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26054243

ABSTRACT

BACKGROUND: Jalmagna is a popular deepwater rice variety with farmers of India because of its good yield under waterlogged condition. However, the variety is highly susceptible to bacterial blight (BB) disease. The development of resistant cultivars has been the most effective and economical strategy to control the disease under deepwater situation. Three resistance genes (xa5 + xa13 + Xa21) were transferred from Swarna BB pyramid line, using a marker-assisted backcrossing (MAB) breeding strategy, into the BB-susceptible elite deepwater cultivar, Jalmagna. RESULTS: Molecular marker integrated backcross breeding program has been employed to transfer three major BB resistance genes (Xa21, xa13 and xa5) into Jalmagna variety. During backcross generations, markers closely linked to the three genes were used to select plants possessing these resistance genes and markers polymorphic between donor and recurrent parent were used to select plants that have maximum contribution from the recurrent parent genome. A selected BC3F1 plant was selfed to generate homozygous BC3F2 plants with different combinations of BB resistance genes. The three-gene pyramid and two gene pyramid lines exhibited high levels of resistance against the BB pathogen. Under conditions of BB infection, the three-gene pyramided lines exhibited a significant yield advantage over Jalmagna. The selected pyramided lines showed all agro-morphologic traits of Jalmagna without compromising the yield. CONCLUSION: The three major BB resistance genes pyramided lines exhibited high level of resistance and are expected to provide durable resistance under deep water situation where control through chemicals is less effective. High similarity in agro-morphologic traits and absence of antagonistic effects for yield and other characters were observed in the best pyramided lines.

SELECTION OF CITATIONS
SEARCH DETAIL