Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
JAMA Psychiatry ; 80(12): 1235-1245, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37647039

ABSTRACT

Importance: Individuals with schizophrenia (SZ) exhibit pronounced deficits in somatostatin (SST) messenger RNA (mRNA) levels in the dorsolateral prefrontal cortex (DLPFC). Molecularly distinct subtypes of SST neurons, located in the superficial and deep zones of the DLPFC, are thought to contribute to different functional processes of this region; understanding the specificity of SST alterations in SZ across these zones could inform the functional consequences of those alterations, including cognitive impairments characteristic of SZ. Objective: To quantify mRNA levels of SST and related neuropeptides in the DLPFC in individuals with SZ, bipolar disorder (BPD), or major depressive disorder (MDD) and unaffected comparison individuals. Design, Setting, and Participants: This case-control study, conducted from January 20, 2020, to March 30, 2022, used postmortem brain tissue specimens previously obtained from individuals with SZ, MDD, or BPD and unaffected individuals from a community population through 2 medical examiners' offices. Demographic, clinical, and educational information was ascertained through psychological autopsies. Exposures: Diagnosis of SZ, BPD, or MDD. Main Outcome and Measures: The main outcome was levels of SST and related neuropeptide mRNA in 2 DLPFC zones, examined using laser microdissection and quantitative polymerase chain reaction or fluorescent in situ hybridization (FISH). Findings were compared using educational attainment as a proxy measure of premorbid cognition. Results: A total of 200 postmortem brain specimens were studied, including 65 from unaffected comparison individuals (42 [65%] male; mean [SD] age, 49.2 [14.1] years); 54 from individuals with SZ (37 [69%] male; mean [SD] age, 47.5 [13.3] years); 42 from individuals with MDD (24 [57%] male; mean [SD] age, 45.6 [12.1] years); and 39 from individuals with BPD (23 [59%] male; mean (SD) age, 46.2 [12.5] years). Compared with unaffected individuals, levels of SST mRNA were lower in both superficial (Cohen d, 0.68; 95% CI, 0.23-1.13; P = .004) and deep (Cohen d, 0.60; 95% CI, 0.16-1.04; P = .02) DLPFC zones in individuals with SZ; findings were confirmed using FISH. Levels of SST were lower only in the superficial zone in the group with MDD (Cohen d, 0.58; 95% CI, 0.14-1.02; P = .12), but the difference was not significant; SST levels were not lower in either zone in the BPD group. Levels of neuropeptide Y and tachykinin 1 showed similar patterns. Neuropeptide alterations in the superficial, but not deep, zone were associated with lower educational attainment only in the group with SZ (superficial: adjusted odds ratio, 1.71 [95% CI, 1.11-2.69]; P = .02; deep: adjusted odds ratio, 1.08 [95% CI, 0.64-1.84]; P = .77). Conclusions and Relevance: The findings revealed diagnosis-specific patterns of molecular alterations in SST neurons in the DLPFC, suggesting that distinct disease processes are reflected in the differential vulnerability of SST neurons in individuals with SZ, MDD, and BPD. In SZ, alterations specifically in the superficial zone may be associated with cognitive dysfunction.


Subject(s)
Depressive Disorder, Major , Neuropeptides , Schizophrenia , Humans , Male , Middle Aged , Female , Schizophrenia/diagnosis , Schizophrenia/genetics , Depressive Disorder, Major/diagnosis , Depressive Disorder, Major/genetics , Case-Control Studies , In Situ Hybridization, Fluorescence , Prefrontal Cortex , Somatostatin/genetics , Somatostatin/metabolism , Neurons , Cognition , RNA, Messenger
2.
Biol Psychiatry ; 94(4): 322-331, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37061080

ABSTRACT

BACKGROUND: Working memory (WM) deficits in schizophrenia are thought to reflect altered inhibition in the dorsolateral prefrontal cortex (DLPFC). This interpretation is supported by findings of lower transcript levels of the 2 enzymes, GAD67 and GAD65, which mediate basal and activity-dependent GABA (gamma-aminobutyric acid) synthesis, respectively. However, the relative magnitude, location within the depth of the DLPFC, and specificity to the disease process of schizophrenia of alterations in GAD67 and/or GAD65 remain unclear. METHODS: Levels of GAD67 and GAD65 messenger RNAs (mRNAs) in superficial (layers 2/superficial 3) and deep (deep layer 6/white matter) zones of the DLPFC were quantified by quantitative polymerase chain reaction in subjects with schizophrenia (n = 41), major depression (n = 42), or bipolar disorder (n = 39) and unaffected comparison (n = 43) subjects. RESULTS: Relative to the unaffected comparison group, GAD67 and GAD65 mRNA levels in the schizophrenia group were lower (p = .039, effect size = -0.69 and p = .027, effect size = -0.72, respectively) in the superficial zone but were unaltered in the deep zone. In the major depression group, only GAD67 mRNA levels were lower and only in the superficial zone (p = .089, effect size = 0.70). No differences were detected in the bipolar disorder group. Neither GAD67 nor GAD65 mRNA alterations were explained by psychosis, mood disturbance, or common comorbid factors. CONCLUSIONS: Alterations in markers of GABA synthesis demonstrated transcript, DLPFC zone, and diagnostic specificity. Given the dependence of WM on GABA neurotransmission in the superficial DLPFC, our findings suggest that limitations to GABA synthesis in this location contribute to WM impairments in schizophrenia, especially during demanding WM tasks, when GABA synthesis requires the activity of both GAD67 and GAD65.


Subject(s)
Schizophrenia , Humans , Schizophrenia/diagnosis , Schizophrenia/genetics , Dorsolateral Prefrontal Cortex , Glutamate Decarboxylase/genetics , Glutamate Decarboxylase/metabolism , RNA, Messenger , gamma-Aminobutyric Acid , Prefrontal Cortex/metabolism
3.
Biochim Biophys Acta Mol Basis Dis ; 1865(9): 2257-2266, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31075491

ABSTRACT

Mutations in the gene triosephosphate isomerase (TPI) lead to a severe multisystem condition that is characterized by hemolytic anemia, a weakened immune system, and significant neurologic symptoms such as seizures, distal neuropathy, and intellectual disability. No effective therapy is available. Here we report a compound heterozygous patient with a novel TPI pathogenic variant (NM_000365.5:c.569G>A:p.(Arg189Gln)) in combination with the common (NM_000365.5:c.315G>C:p.(Glu104Asp)) allele. We characterized the novel variant by mutating the homologous Arg in Drosophila using a genomic engineering system, demonstrating that missense mutations at this position cause a strong loss of function. Compound heterozygote animals were generated and exhibit motor behavioural deficits and markedly reduced protein levels. Furthermore, examinations of the TPIArg189Gln/TPIGlu104Asp patient fibroblasts confirmed the reduction of TPI levels, suggesting that Arg189Gln may also affect the stability of the protein. The Arg189 residue participates in two salt bridges on the backside of the TPI enzyme dimer, and we reveal that a mutation at this position alters the coordination of the substrate-binding site and important catalytic residues. Collectively, these data reveal a new human pathogenic variant associated with TPI deficiency, identify the Arg189 salt bridge as critical for organizing the catalytic site of the TPI enzyme, and demonstrates that reduced TPI levels are associated with human TPI deficiency. These findings advance our understanding of the molecular pathogenesis of the disease, and suggest new therapeutic avenues for pre-clinical trials.


Subject(s)
Anemia, Hemolytic, Congenital Nonspherocytic/pathology , Carbohydrate Metabolism, Inborn Errors/pathology , Triose-Phosphate Isomerase/deficiency , Triose-Phosphate Isomerase/metabolism , Alleles , Amino Acid Sequence , Anemia, Hemolytic, Congenital Nonspherocytic/genetics , Animals , Base Sequence , Carbohydrate Metabolism, Inborn Errors/genetics , Catalytic Domain , Child, Preschool , Dimerization , Disease Models, Animal , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Female , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Mutation, Missense , Pedigree , Protein Stability , Sequence Alignment , Triose-Phosphate Isomerase/genetics
4.
Mol Genet Metab ; 126(4): 439-447, 2019 04.
Article in English | MEDLINE | ID: mdl-30683556

ABSTRACT

Seizures are a feature not only of the many forms of epilepsy, but also of global metabolic diseases such as mitochondrial encephalomyopathy (ME) and glycolytic enzymopathy (GE). Modern anti-epileptic drugs (AEDs) are successful in many cases, but some patients are refractory to existing AEDs, which has led to a surge in interest in clinically managed dietary therapy such as the ketogenic diet (KD). This high-fat, low-carbohydrate diet causes a cellular switch from glycolysis to fatty acid oxidation and ketone body generation, with a wide array of downstream effects at the genetic, protein, and metabolite level that may mediate seizure protection. We have recently shown that a Drosophila model of human ME (ATP61) responds robustly to the KD; here, we have investigated the mechanistic importance of the major metabolic consequences of the KD in the context of this bioenergetics disease: ketogenesis, reduction of glycolysis, and anaplerosis. We have found that reduction of glycolysis does not confer seizure protection, but that dietary supplementation with ketone bodies or the anaplerotic lipid triheptanoin, which directly replenishes the citric acid cycle, can mimic the success of the ketogenic diet even in the presence of standard carbohydrate levels. We have also shown that the proper functioning of the citric acid cycle is crucial to the success of the KD in the context of ME. Furthermore, our data reveal that multiple seizure models, in addition to ATP61, are treatable with the ketogenic diet. Importantly, one of these mutants is TPIsugarkill, which models human glycolytic enzymopathy, an incurable metabolic disorder with severe neurological consequences. Overall, these studies reveal widespread success of the KD in Drosophila, further cementing its status as an excellent model for studies of KD treatment and mechanism, and reveal key insights into the therapeutic potential of dietary therapy against neuronal hyperexcitability in epilepsy and metabolic disease.


Subject(s)
Diet, Ketogenic , Glycolysis , Mitochondrial Encephalomyopathies/diet therapy , Seizures/prevention & control , Animals , Dietary Supplements , Disease Models, Animal , Drosophila , Drosophila Proteins/genetics , Ketone Bodies/administration & dosage , Mitochondrial Encephalomyopathies/complications , Mitochondrial Proton-Translocating ATPases/genetics , Seizures/diet therapy , Seizures/etiology , Triglycerides/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...