Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Front Mol Biosci ; 11: 1392689, 2024.
Article in English | MEDLINE | ID: mdl-38859932

ABSTRACT

Introduction: The purpose of this study is to delineate anti-inflammatory and antioxidant potential of varenicline, a cigarette smoking cessation aid, on decreasing lipopolysaccharide (LPS)-elevated proinflammatory cytokines in RAW 264.7 murine macrophage cultures which we showed earlier to occur via cholinergic anti-inflammatory pathway (CAP) activation. To this end, we investigated the possible suppressive capacity of varenicline on LPS-regulated cyclooxygenase (COX-1 and COX-2) via α7 nicotinic acetylcholine receptor (α7nAChR) activation using the same in vitro model. Materials and Methods: In order to test anti-inflammatory effectiveness of varenicline, the levels of COX isoforms and products (PGE2, 6-keto PGF1α, a stable analog of PGI2, and TXA2) altered after LPS administration were determined by Enzyme Linked Immunosorbent Assay (ELISA). The antioxidant effects of varenicline were assessed by measuring reductions in reactive oxygen species (ROS) using a fluorometric intracellular ROS assay kit. We further investigated the contribution of nAChR subtypes by using non-selective and/or selective α7nAChR antagonists. The results were compared with that of conventional anti-inflammatory medications, such as ibuprofen, celecoxib and dexamethasone. Results: Varenicline significantly reduced LPS-induced COX-1, COX-2 and prostaglandin levels and ROS to an extent similar to that observed with anti-inflammatory agents used. Discussion: Significant downregulation in LPS-induced COX isoforms and associated decreases in PGE2, 6-keto PGF1α, and TXA2 levels along with reduction in ROS may be partly mediated via varenicline-activated α7nAChRs.

2.
Toxicon ; 241: 107661, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38408526

ABSTRACT

Mushroom poisonings caused by Amanita phalloides are the leading cause of mushroom-related deaths worldwide. Alpha-Amanitin (α-AMA), a toxic substance present in these mushrooms, is responsible for the resulting hepatotoxicity and nephrotoxicity. The objective of our study was to determine the distribution of α-AMA in Balb/c mice by labeling with Iodine-131. Mice were injected with a toxic dose (1.4 mg/kg) of α-AMA labeled with Iodine-131. The mice were sacrificed at the 1st, 2nd, 4th, 8th, 24th, and 48th hours under anesthesia. The organs of the mice were removed, and their biodistribution was assessed in all experiments. The percent injected dose per gram (ID/g %) value for kidney, liver, lung, and heart tissues at 1st hour were 1.59 ± 0.07, 1.25 ± 0.33, 3.67 ± 0.80 and 1.07 ± 0.01 respectively. This study provides insights into the potential long-term effects of α-AMA accumulation in specific organs. Additionally, this study has generated essential data that can be used to demonstrate the impact of antidotes on the biological distribution of α-AMA in future toxicity models.


Subject(s)
Alpha-Amanitin , Mushroom Poisoning , Animals , Mice , Alpha-Amanitin/toxicity , Tissue Distribution , Iodine Radioisotopes , Amanita
3.
Mol Biol Rep ; 50(10): 8551-8563, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37644370

ABSTRACT

BACKGROUND: Liver cancer is the third leading cause of cancer-related deaths worldwide, and hepatocellular carcinoma (HCC) is the most common type of liver cancer. Transarterial interventions are among the chemotherapeutic approaches used in hardly operable regions prior to transplantation, and in electrochemotherapy, where doxorubicin is used. However, the efficacy of treatment is affected by resistance mechanisms. Previously, we showed that overexpression of the CUE5 gene results in doxorubicin resistance in Saccharomyces cerevisiae (S. cerevisiae). In this study, the effect of Toll-interacting protein (TOLLIP), the human ortholog of CUE5, on doxorubicin resistance was evaluated in HCC cells to identify its possible role in increasing the efficacy of transarterial interventions. METHODS AND RESULTS: The NIH Gene Expression Omnibus (GEO) and Oncomine datasets were analyzed for HCC cell lines with relatively low and high TOLLIP expression, and SNU449 and Hep3B cell lines were chosen, respectively. TOLLIP expression was increased by plasmid transfection and decreased by TOLLIP-siRNA in both cell lines and evaluated by RT-PCR and ELISA. Cell proliferation and viability were examined using xCELLigence and MTT assays after doxorubicin treatment, and growth inhibitory 50 (GI 50) concentrations were evaluated. Doxorubicin GI 50 concentrations decreased approximately 2-folds in both cell lines upon silencing TOLLIP after 48 h of drug treatment. CONCLUSIONS: Our results showed for the first time that silencing TOLLIP in hepatocellular carcinoma cells may help sensitize these cells to doxorubicin and increase the efficacy of chemotherapeutic regimens where doxorubicin is used.


Subject(s)
Carcinoma, Hepatocellular , Intracellular Signaling Peptides and Proteins , Liver Neoplasms , Humans , Apoptosis , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Drug Resistance, Neoplasm/genetics , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Saccharomyces cerevisiae , Intracellular Signaling Peptides and Proteins/genetics
4.
Bratisl Lek Listy ; 124(1): 47-52, 2023.
Article in English | MEDLINE | ID: mdl-36519607

ABSTRACT

OBJECTIVES: The purpose of this study is to investigate the effects of cholinergic anti-inflammatory pathway (CAP)-activating drugs, choline and citicoline (Cytidinediphosphate-choline, CDP-choline), on lipopolysaccharide (LPS)-induced acute kidney injury (AKI) parameters and the contribution of NADPH Oxidase4 (NOX4) p22phox. BACKGROUND: Endotoxemia induces a systemic inflammatory response characterized by the production of pro-inflammatory mediators and reactive oxygen species (ROS), which eventually develops acute kidney injury (AKI). NADPH Oxidase4 (NOX4) p22phox pathway contributes to the development of endotoxemia-induced AKI. Inflammatory response can be controlled by CAP. METHODS: Expressions levels of KIM-1, TNF-α, NOX4, p22phox and NFκB in the kidney tissues of rats were analyzed via RT-PCR in experimental groups; 1. Control, 2. LPS (10 mg/kg) + saline, 3. LPS + CDP-choline (375 mg/kg) and 4. LPS + choline (90 mg/kg). Choline and ROS levels in kidney tissues were also measured by a spectrofluorometric assay. RESULTS: LPS-induced elevations of ROS levels were decreased by CDP-choline or choline administration (p < 0.001). LPS-elevated KIM-1, TNFα, NOX4, p22 phox, and NFκB expressions were significantly decreased by choline or CDP-choline treatments (p < 0.001). CONCLUSION: Decreased ROS production in kidney tissues in treatment groups suggests that choline or CDP-choline may have therapeutic potential in endotoxemia-associated AKI via downregulating NOX4 and p22phox expressions (Tab. 1, Fig. 5, Ref. 45). Text in PDF www.elis.sk Keywords: endotoxemia, choline, cytidine diphosphate choline, acute kidney injury, reactive oxygen species.


Subject(s)
Acute Kidney Injury , Endotoxemia , Rats , Animals , Cytidine Diphosphate Choline/pharmacology , Cytidine Diphosphate Choline/therapeutic use , Cytidine Diphosphate Choline/metabolism , Reactive Oxygen Species/metabolism , Endotoxemia/drug therapy , Endotoxemia/metabolism , Lipopolysaccharides/pharmacology , Choline/metabolism , Choline/pharmacology , Choline/therapeutic use , NADP/metabolism , NADP/pharmacology , NADP/therapeutic use , Oxidative Stress , Acute Kidney Injury/drug therapy , Acute Kidney Injury/chemically induced , NF-kappa B/metabolism , Kidney
5.
Front Mol Biosci ; 8: 721533, 2021.
Article in English | MEDLINE | ID: mdl-34712695

ABSTRACT

The cholinergic anti-inflammatory pathway plays an important role in controlling inflammation. This study investigated the effects of varenicline, an α7 nicotinic acetylcholine receptor (α7nAChR) agonist, on inflammatory cytokine levels, cell proliferation, and migration rates in a lipopolysaccharide (LPS)-induced inflammation model in RAW 264.7 murine macrophage cell lines. The cells were treated with increasing concentrations of varenicline, followed by LPS incubation for 24 h. Prior to receptor-mediated events, anti-inflammatory effects of varenicline on different cytokines and chemokines were investigated using a cytokine array. Nicotinic AChR-mediated effects of varenicline were investigated by using a non-selective nAChR antagonist mecamylamine hydrochloride and a selective α7nAChR antagonist methyllycaconitine citrate. TNFα, IL-1ß, and IL-6 levels were determined by the ELISA test in cell media 24 h after LPS administration and compared with those of dexamethasone. The rates of cellular proliferation and migration were monitored for 24 h after drug treatment using a real-time cell analysis system. Varenicline decreased LPS-induced cytokines and chemokines including TNFα, IL-6, and IL-1ß via α7nAChRs to a similar level that observed with dexamethasone. Varenicline treatment decreased LPS-induced cell proliferation, without any nAChR involvement. On the other hand, the LPS-induced cell migration rate decreased with varenicline via α7nAChR. Our data suggest that varenicline inhibits LPS-induced inflammatory response by activating α7nAChRs within the cholinergic anti-inflammatory pathway, reducing the cytokine levels and cell migration.

SELECTION OF CITATIONS
SEARCH DETAIL