Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
2.
RNA ; 28(3): 303-319, 2022 03.
Article in English | MEDLINE | ID: mdl-34893560

ABSTRACT

Spinal muscular atrophy (SMA) is a devastating neurodegenerative disease caused by reduced amounts of the ubiquitously expressed Survival of Motor Neuron (SMN) protein. In agreement with its crucial role in the biogenesis of spliceosomal snRNPs, SMN-deficiency is correlated to numerous splicing alterations in patient cells and various tissues of SMA mouse models. Among the snRNPs whose assembly is impacted by SMN-deficiency, those involved in the minor spliceosome are particularly affected. Importantly, splicing of several, but not all U12-dependent introns has been shown to be affected in different SMA models. Here, we have investigated the molecular determinants of this differential splicing in spinal cords from SMA mice. We show that the branchpoint sequence (BPS) is a key element controlling splicing efficiency of minor introns. Unexpectedly, splicing of several minor introns with suboptimal BPS is not affected in SMA mice. Using in vitro splicing experiments and oligonucleotides targeting minor or major snRNAs, we show for the first time that splicing of these introns involves both the minor and major machineries. Our results strongly suggest that splicing of a subset of minor introns is not affected in SMA mice because components of the major spliceosome compensate for the loss of minor splicing activity.


Subject(s)
Muscular Atrophy, Spinal/genetics , RNA Splicing , Spliceosomes/metabolism , Animals , HeLa Cells , Humans , Introns , Mice , Muscular Atrophy, Spinal/metabolism , RNA Splice Sites , Ribonucleoproteins, Small Nuclear/metabolism
3.
Mol Ther Methods Clin Dev ; 20: 1-17, 2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33335943

ABSTRACT

Fabry disease is a rare X-linked disorder affecting α-galactosidase A, a rate-limiting enzyme in lysosomal catabolism of glycosphingolipids. Current treatments present important limitations, such as low half-life and limited distribution, which gene therapy can overcome. The aim of this work was to test a novel adeno-associated viral vector, serotype 9 (AAV9), ubiquitously expressing human α-galactosidase A to treat Fabry disease (scAAV9-PGK-GLA). The vector was preliminary tested in newborns of a Fabry disease mouse model. 5 months after treatment, α-galactosidase A activity was detectable in the analyzed tissues, including the central nervous system. Moreover, we tested the vector in adult animals of both sexes at two doses and disease stages (presymptomatic and symptomatic) by single intravenous injection. We found that the exogenous α-galactosidase A was active in peripheral tissues as well as the central nervous system and prevented glycosphingolipid accumulation in treated animals up to 5 months following injection. Antibodies against α-galactosidase A were produced in 9 out of 32 treated animals, although enzyme activity in tissues was not significantly affected. These results demonstrate that scAAV9-PGK-GLA can drive widespread and sustained expression of α-galactosidase A, cross the blood brain barrier after systemic delivery, and reduce pathological signs of the Fabry disease mouse model.

4.
Mol Ther ; 28(8): 1887-1901, 2020 08 05.
Article in English | MEDLINE | ID: mdl-32470325

ABSTRACT

Spinal muscular atrophy (SMA) is a neuromuscular disease mainly caused by mutations or deletions in the survival of motor neuron 1 (SMN1) gene and characterized by the degeneration of motor neurons and progressive muscle weakness. A viable therapeutic approach for SMA patients is a gene replacement strategy that restores functional SMN expression using adeno-associated virus serotype 9 (AAV9) vectors. Currently, systemic or intra-cerebrospinal fluid (CSF) delivery of AAV9-SMN is being explored in clinical trials. In this study, we show that the postnatal delivery of an AAV9 that expresses SMN under the control of the neuron-specific promoter synapsin selectively targets neurons without inducing re-expression in the peripheral organs of SMA mice. However, this approach is less efficient in restoring the survival and neuromuscular functions of SMA mice than the systemic or intra-CSF delivery of an AAV9 in which SMN is placed under the control of a ubiquitous promoter. This study suggests that further efforts are needed to understand the extent to which SMN is required in neurons and peripheral organs for a successful therapeutic effect.


Subject(s)
Dependovirus/genetics , Genetic Vectors/genetics , Motor Neurons/metabolism , Motor Neurons/virology , Muscular Atrophy, Spinal/genetics , Survival of Motor Neuron 1 Protein/genetics , Animals , Disease Models, Animal , Gene Expression , Gene Transfer Techniques , Genetic Therapy , Locomotion , Mice , Muscular Atrophy, Spinal/drug therapy , Phenotype , Prognosis , Promoter Regions, Genetic , Spinal Cord/metabolism , Spinal Cord/pathology , Survival of Motor Neuron 1 Protein/metabolism , Transduction, Genetic , Treatment Outcome
5.
Med Sci (Paris) ; 36(2): 137-140, 2020 Feb.
Article in French | MEDLINE | ID: mdl-32129749

ABSTRACT

Spinal muscular atrophy (SMA) is the most common genetic disease leading to infant mortality. This neuro-muscular disorder is caused by the loss or mutation of the telomeric copy of the 'survival of motor neuron' (Smn) gene, termed SMN1. Loss of SMN1 leads to reduced SMN protein levels, inducing degeneration of motor neurons (MN) and progressive muscle weakness and atrophy. Gene therapy, consisting of reintroducing SMN1 in the MNs, is an attractive approach for SMA. We showed the most efficient rescue of SMA mice to date after a single intravenous injection of an AAV9 expressing SMN1, highlighting the considerable potential of this method for the treatment of human SMA. Recently, a startup led by the Dr Kaspar decided to test this experimental approach in children with SMA type 1. Dr Mendell, in charge of this clinical project, showed a very significant increase of the lifespan and motor function of the patients (until 4 years) after a single injection of AAV9-SMN1 (named ZolgenSMA®) into an arm or leg vein. This gene therapy treatment obtained a marketing authorization by the FDA in May 24 and is now the first efficient therapy for neuromuscular disease.


TITLE: Amyotrophie spinale infantile - De la découverte du gène à la thérapie génique. ABSTRACT: L'amyotrophie spinale ou SMA est la maladie génétique la plus fréquente menant à la mortalité infantile. Cette maladie neuromusculaire est due à l'altération du gène SMN1. Cette anomalie génétique provoque la réduction des taux de protéine Smn, induisant la dégénérescence des neurones moteurs, la faiblesse et l'atrophie musculaire. La thérapie génique, consistant à réintroduire le gène SMN1 normal dans les motoneurones constitue une thérapie de choix pour la SMA. Nous avons montré l'efficacité sans précédent de cette approche chez la souris modèle de SMA après une simple injection intraveineuse d'un AAV9 exprimant SMN1. Une jeune société de biotechnologie, dirigée par le Dr Kaspar, a testé cette approche expérimentale chez de jeunes patients atteints de SMA type 1. Le Dr Mendell, en charge de ce projet clinique, a montré une augmentation significative de la survie et des fonctions motrices des patients (jusqu'à 4 ans) après une seule injection de l'AAV9-SMN (appelé ZolgenSMA) dans la veine du bras ou de la jambe. Cette thérapie, qui a obtenu l'AMM par la FDA le 24 mai 2019, est actuellement la première thérapie génique efficace dans les maladies neuromusculaires.


Subject(s)
Genetic Association Studies , Genetic Therapy , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/therapy , Animals , Child , Disease Models, Animal , Genetic Association Studies/methods , Genetic Association Studies/trends , Genetic Therapy/methods , Genetic Therapy/trends , Humans , Mice , Motor Neurons/physiology , Muscular Atrophy, Spinal/diagnosis , Mutation , Spinal Muscular Atrophies of Childhood/diagnosis , Spinal Muscular Atrophies of Childhood/genetics , Spinal Muscular Atrophies of Childhood/therapy
6.
Transl Neurodegener ; 8: 35, 2019.
Article in English | MEDLINE | ID: mdl-31827783

ABSTRACT

BACKGROUND: We recently demonstrated an endolysosomal accumulation of the ß-secretase-derived APP C-terminal fragment (CTF) C99 in brains of Alzheimer disease (AD) mouse models. Moreover, we showed that the treatment with the γ-secretase inhibitor (D6) led to further increased endolysosomal APP-CTF levels, but also revealed extracellular APP-CTF-associated immunostaining. We here hypothesized that this latter staining could reflect extracellular vesicle (EV)-associated APP-CTFs and aimed to characterize these γ-secretase inhibitor-induced APP-CTFs. METHODS: EVs were purified from cell media or mouse brains from vehicle- or D6-treated C99 or APPswedish expressing cells/mice and analyzed for APP-CTFs by immunoblot. Combined pharmacological, immunological and genetic approaches (presenilin invalidation and C99 dimerization mutants (GXXXG)) were used to characterize vesicle-containing APP-CTFs. Subcellular APP-CTF localization was determined by immunocytochemistry. RESULTS: Purified EVs from both AD cell or mouse models were enriched in APP-CTFs as compared to EVs from control cells/brains. Surprisingly, EVs from D6-treated cells not only displayed increased C99 and C99-derived C83 levels but also higher molecular weight (HMW) APP-CTF-immunoreactivities that were hardly detectable in whole cell extracts. Accordingly, the intracellular levels of HMW APP-CTFs were amplified by the exosomal inhibitor GW4869. By combined pharmacological, immunological and genetic approaches, we established that these HMW APP-CTFs correspond to oligomeric APP-CTFs composed of C99 and/or C83. Immunocytochemical analysis showed that monomers were localized mainly to the trans-Golgi network, whereas oligomers were confined to endosomes and lysosomes, thus providing an anatomical support for the selective recovery of HMW APP-CTFs in EVs. The D6-induced APP-CTF oligomerization and subcellular mislocalization was indeed due to γ-secretase blockade, since it similarly occurred in presenilin-deficient fibroblasts. Further, our data proposed that besides favoring APP-CTF oligomerization by preventing C99 proteolysis, γ-secretase inhibiton also led to a defective SorLA-mediated retrograde transport of HMW APP-CTFs from endosomal compartments to the TGN. CONCLUSIONS: This is the first study to demonstrate the presence of oligomeric APP-CTFs in AD mouse models, the levels of which are selectively enriched in endolysosomal compartments including exosomes and amplified by γ-secretase inhibition. Future studies should evaluate the putative contribution of these exosome-associated APP-CTFs in AD onset, progression and spreading.

7.
Hum Mol Genet ; 27(6): 954-968, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29325092

ABSTRACT

Sandhoff disease (SD) is a rare inherited disorder caused by a deficiency of ß-hexosaminidase activity which is fatal because no effective treatment is available. A mouse model of Hexb deficiency reproduces the key pathognomonic features of SD patients with severe ubiquitous lysosomal dysfunction, GM2 accumulation, neuroinflammation and neurodegeneration, culminating in death at 4 months. Here, we show that a single intravenous neonatal administration of a self-complementary adeno-associated virus 9 vector (scAAV9) expressing the Hexb cDNA in SD mice is safe and sufficient to prevent disease development. Importantly, we demonstrate for the first time that this treatment results in a normal lifespan (over 700 days) and normalizes motor function assessed by a battery of behavioral tests, with scAAV9-treated SD mice being indistinguishable from wild-type littermates. Biochemical analyses in multiple tissues showed a significant increase in hexosaminidase A activity, which reached 10-15% of normal levels. AAV9 treatment was sufficient to prevent GM2 and GA2 storage almost completely in the cerebrum (less so in the cerebellum), as well as thalamic reactive gliosis and thalamocortical neuron loss in treated Hexb-/- mice. In summary, this study demonstrated a widespread protective effect throughout the entire CNS after a single intravenous administration of the scAAV9-Hexb vector to neonatal SD mice.


Subject(s)
Hexosaminidase B/pharmacology , Sandhoff Disease/drug therapy , Sandhoff Disease/pathology , Administration, Intravenous , Animals , Animals, Newborn , Brain/metabolism , Disease Models, Animal , Female , G(M2) Ganglioside/metabolism , Gangliosides/metabolism , Hexosaminidase B/genetics , Hexosaminidase B/metabolism , Male , Mice , Mice, Inbred C57BL , Sandhoff Disease/metabolism
8.
Biol Psychiatry ; 83(5): 416-427, 2018 03 01.
Article in English | MEDLINE | ID: mdl-28587718

ABSTRACT

BACKGROUND: Mitophagy and mitochondrial dynamics alterations are two major hallmarks of neurodegenerative diseases. Dysfunctional mitochondria accumulate in Alzheimer's disease-affected brains by yet unexplained mechanisms. METHODS: We combined cell biology, molecular biology, and pharmacological approaches to unravel a novel molecular pathway by which presenilins control phosphatase and tensin homolog-induced kinase 1 (Pink-1) expression and transcription. In vivo approaches were carried out on various transgenic and knockout animals as well as in adeno-associated virus-infected mice. Functional readout and mitochondrial physiology (mitochondrial potential) were assessed by combined procedures including flow cytometry, live imaging analysis, and immunohistochemistry. RESULTS: We show that presenilins 1 and 2 trigger opposite effects on promoter transactivation, messenger RNA, and protein expression of Pink-1. This control is linked to γ-secretase activity and ß-amyloid precursor protein but is independent of phosphatase and tensin homolog. We show that amyloid precursor protein intracellular domain (AICD) accounts for presenilin-dependent phenotype and upregulates Pink-1 transactivation in cells as well as in vivo in a Forkhead box O3a-dependent manner. Interestingly, the modulation of γ-secretase activity or AICD expression affects Pink-1-related control of mitophagy and mitochondrial dynamics. Finally, we show that parkin acts upstream of presenilins to control Pink-1 promoter transactivation and protein expression. CONCLUSIONS: Overall, we delineate a molecular cascade presenilins-AICD-Forkhead box O3a linking parkin to Pink-1. Our study demonstrates AICD-mediated Pink-1-dependent control of mitochondrial physiology by presenilins. Furthermore, it unravels a parkin-Pink-1 feedback loop controlling mitochondrial physiology that could be disrupted in neurodegenerative conditions.


Subject(s)
Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Protein Precursor/metabolism , Forkhead Box Protein O3/metabolism , Hippocampus/metabolism , Mitochondria/metabolism , Presenilins/metabolism , Protein Kinases/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Cell Line , Disease Models, Animal , Embryo, Mammalian , Fibroblasts , HEK293 Cells , Humans , Intracellular Space/metabolism , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Transgenic
9.
Sci Transl Med ; 9(418)2017 Nov 29.
Article in English | MEDLINE | ID: mdl-29187643

ABSTRACT

Glycogen storage disease type II or Pompe disease is a severe neuromuscular disorder caused by mutations in the lysosomal enzyme, acid α-glucosidase (GAA), which result in pathological accumulation of glycogen throughout the body. Enzyme replacement therapy is available for Pompe disease; however, it has limited efficacy, has high immunogenicity, and fails to correct pathological glycogen accumulation in nervous tissue and skeletal muscle. Using bioinformatics analysis and protein engineering, we developed transgenes encoding GAA that could be expressed and secreted by hepatocytes. Then, we used adeno-associated virus (AAV) vectors optimized for hepatic expression to deliver the GAA transgenes to Gaa knockout (Gaa-/-) mice, a model of Pompe disease. Therapeutic gene transfer to the liver rescued glycogen accumulation in muscle and the central nervous system, and ameliorated cardiac hypertrophy as well as muscle and respiratory dysfunction in the Gaa-/- mice; mouse survival was also increased. Secretable GAA showed improved therapeutic efficacy and lower immunogenicity compared to nonengineered GAA. Scale-up to nonhuman primates, and modeling of GAA expression in primary human hepatocytes using hepatotropic AAV vectors, demonstrated the therapeutic potential of AAV vector-mediated liver expression of secretable GAA for treating pathological glycogen accumulation in multiple tissues in Pompe disease.


Subject(s)
Dependovirus/genetics , Glycogen Storage Disease Type II/therapy , Liver/metabolism , Animals , Genetic Therapy , Genetic Vectors , Male , Mice , Mice, Knockout , Muscle, Skeletal/metabolism , alpha-Glucosidases/genetics , alpha-Glucosidases/physiology
10.
Mol Ther ; 25(9): 2038-2052, 2017 09 06.
Article in English | MEDLINE | ID: mdl-28663100

ABSTRACT

One of the most promising therapeutic approaches for familial amyotrophic lateral sclerosis linked to superoxide dismutase 1 (SOD1) is the suppression of toxic mutant SOD1 in the affected tissues. Here, we report an innovative molecular strategy for inducing substantial, widespread, and sustained reduction of mutant human SOD1 (hSOD1) levels throughout the body of SOD1G93A mice, leading to therapeutic effects in animals. Adeno-associated virus serotype rh10 vectors (AAV10) were used to mediate exon skipping of the hSOD1 pre-mRNA by expression of exon-2-targeted antisense sequences embedded in a modified U7 small-nuclear RNA (AAV10-U7-hSOD). Skipping of hSOD1 exon 2 led to the generation of a premature termination codon, inducing production of a deleted transcript that was subsequently degraded by the activation of nonsense-mediated decay. Combined intravenous and intracerebroventricular delivery of AAV10-U7-hSOD increased the survival of SOD1G93A mice injected either at birth or at 50 days of age (by 92% and 58%, respectively) and prevented weight loss and the decline of neuromuscular function. This study reports the effectiveness of an exon-skipping approach in SOD1-ALS mice, supporting the translation of this technology to the treatment of this as yet incurable disease.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Dependovirus/genetics , Genetic Therapy , Genetic Vectors/genetics , Superoxide Dismutase-1/genetics , Age of Onset , Amyotrophic Lateral Sclerosis/mortality , Amyotrophic Lateral Sclerosis/physiopathology , Amyotrophic Lateral Sclerosis/therapy , Animals , Disease Models, Animal , Exons , Gene Order , Gene Transfer Techniques , Genetic Therapy/methods , Genetic Vectors/administration & dosage , Humans , Mice , Mice, Transgenic , Motor Activity/genetics , Oligonucleotides, Antisense , RNA Splice Sites , RNA, Messenger/genetics , RNA, Messenger/metabolism , Recovery of Function , Superoxide Dismutase-1/metabolism , Survival Rate , Transduction, Genetic
11.
Nucleic Acids Res ; 45(9): 5399-5413, 2017 May 19.
Article in English | MEDLINE | ID: mdl-28115638

ABSTRACT

Selenoprotein synthesis requires the co-translational recoding of a UGASec codon. This process involves an RNA structural element, called Selenocysteine Insertion Sequence (SECIS) and the SECIS binding protein 2 (SBP2). Several selenoprotein mRNAs undergo unusual cap hypermethylation by the trimethylguanosine synthase 1 (Tgs1), which is recruited by the ubiquitous Survival of MotoNeurons (SMN) protein. SMN, the protein involved in spinal muscular atrophy, is part of a chaperone complex that collaborates with the methylosome for RNP assembly. Here, we analyze the role of individual SMN and methylosome components in selenoprotein mRNP assembly and translation. We show that SBP2 interacts directly with four proteins of the SMN complex and the methylosome core proteins. Nevertheless, SBP2 is not a methylation substrate of the methylosome. We found that both SMN and methylosome complexes are required for efficient translation of the selenoprotein GPx1 in vivo. We establish that the steady-state level of several selenoprotein mRNAs, major regulators of oxidative stress damage in neurons, is specifically reduced in the spinal cord of SMN-deficient mice and that cap hypermethylation of GPx1 mRNA is affected. Altogether we identified a new function of the SMN complex and the methylosome in selenoprotein mRNP assembly and expression.


Subject(s)
Protein Biosynthesis , RNA-Binding Proteins/metabolism , Ribonucleoproteins/metabolism , SMN Complex Proteins/metabolism , Selenoproteins/metabolism , Glutathione Peroxidase , HEK293 Cells , HeLa Cells , Humans , Methylation , Models, Biological , Muscular Atrophy, Spinal/metabolism , Muscular Atrophy, Spinal/pathology , Protein Binding , Spinal Cord/metabolism , Glutathione Peroxidase GPX1
12.
Neurobiol Dis ; 99: 1-11, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27974239

ABSTRACT

Rett syndrome (RTT) is a severe X-linked neurodevelopmental disorder that is primarily caused by mutations in the methyl CpG binding protein 2 gene (MECP2). RTT is the second most prevalent cause of intellectual disability in girls and there is currently no cure for the disease. The finding that the deficits caused by the loss of Mecp2 are reversible in the mouse has bolstered interest in gene therapy as a cure for RTT. In order to assess the feasibility of gene therapy in a RTT mouse model, and in keeping with translational goals, we investigated the efficacy of a self-complementary AAV9 vector expressing a codon-optimized version of Mecp2 (AAV9-MCO) delivered via a systemic approach in early symptomatic Mecp2-deficient (KO) mice. Our results show that AAV9-MCO administered at a dose of 2×1011 viral genome (vg)/mouse was able to significantly increase survival and weight gain, and delay the occurrence of behavioral deficits. Apneas, which are one of the core RTT breathing deficits, were significantly decreased to WT levels in Mecp2 KO mice after AAV9-MCO administration. Semi-quantitative analysis showed that AAV9-MCO administration in Mecp2 KO mice resulted in 10 to 20% Mecp2 immunopositive cells compared to WT animals, with the highest Mecp2 expression found in midbrain regions known to regulate cardio-respiratory functions. In addition, we also found a cell autonomous increase in tyrosine hydroxylase levels in the A1C1 and A2C2 catecholaminergic Mecp2+ neurons in treated Mecp2 KO mice, which may partly explain the beneficial effect of AAV9-MCO administration on apneas occurrence.


Subject(s)
Genetic Therapy , Methyl-CpG-Binding Protein 2/administration & dosage , Rett Syndrome/therapy , Amines , Animals , Apnea/metabolism , Apnea/pathology , Apnea/prevention & control , Codon , Cyclohexanecarboxylic Acids , Dependovirus , Disease Models, Animal , Disease Progression , Gabapentin , Genetic Vectors , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Male , Mesencephalon/metabolism , Mesencephalon/pathology , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism , Mice, Inbred C57BL , Mice, Knockout , Respiration , Rett Syndrome/metabolism , Rett Syndrome/pathology , Survival Analysis , Tyrosine 3-Monooxygenase/metabolism , Weight Gain , gamma-Aminobutyric Acid
13.
Mol Ther Methods Clin Dev ; 3: 16060, 2016.
Article in English | MEDLINE | ID: mdl-27652289

ABSTRACT

Spinal muscular atrophy (SMA) is an autosomal recessive disease of variable severity caused by mutations in the SMN1 gene. Deficiency of the ubiquitous SMN function results in spinal cord α-motor neuron degeneration and proximal muscle weakness. Gene replacement therapy with recombinant adeno-associated viral (AAV) vectors showed therapeutic efficacy in several animal models of SMA. Here, we report a study aimed at analyzing the efficacy and biodistribution of a serotype-9, self-complementary AAV vector expressing a codon-optimized human SMN1 coding sequence (coSMN1) under the control of the constitutive phosphoglycerate kinase (PGK) promoter in neonatal SMNΔ7 mice, a severe animal model of the disease. We administered the scAAV9-coSMN1 vector in the intracerebroventricular (ICV) space in a dose-escalating mode, and analyzed survival, vector biodistribution and SMN protein expression in the spinal cord and peripheral tissues. All treated mice showed a significant, dose-dependent rescue of lifespan and growth with a median survival of 346 days. Additional administration of vector by an intravenous route (ICV+IV) did not improve survival, and vector biodistribution analysis 90 days postinjection indicated that diffusion from the cerebrospinal fluid to the periphery was sufficient to rescue the SMA phenotype. These results support the preclinical development of SMN1 gene therapy by CSF vector delivery.

14.
Mol Neurodegener ; 11(1): 58, 2016 07 28.
Article in English | MEDLINE | ID: mdl-27465358

ABSTRACT

BACKGROUND: We used lentiviral vectors (LVs) to generate a new SCA7 animal model overexpressing a truncated mutant ataxin-7 (MUT ATXN7) fragment in the mouse cerebellum, in order to characterize the specific neuropathological and behavioral consequences of the genetic defect in this brain structure. RESULTS: LV-mediated overexpression of MUT ATXN7 into the cerebellum of C57/BL6 adult mice induced neuropathological features similar to that observed in patients, such as intranuclear aggregates in Purkinje cells (PC), loss of synaptic markers, neuroinflammation, and neuronal death. No neuropathological changes were observed when truncated wild-type ataxin-7 (WT ATXN7) was injected. Interestingly, the local delivery of LV-expressing mutant ataxin-7 (LV-MUT-ATXN7) into the cerebellum of wild-type mice also mediated the development of an ataxic phenotype at 8 to 12 weeks post-injection. Importantly, our data revealed abnormal levels of the FUS/TLS, MBNL1, and TDP-43 RNA-binding proteins in the cerebellum of the LV-MUT-ATXN7 injected mice. MUT ATXN7 overexpression induced an increase in the levels of the pathological phosphorylated TDP-43, and a decrease in the levels of soluble FUS/TLS, with both proteins accumulating within ATXN7-positive intranuclear inclusions. MBNL1 also co-aggregated with MUT ATXN7 in most PC nuclear inclusions. Interestingly, no MBNL2 aggregation was observed in cerebellar MUT ATXN7 aggregates. Immunohistochemical studies in postmortem tissue from SCA7 patients and SCA7 knock-in mice confirmed SCA7-induced nuclear accumulation of FUS/TLS and MBNL1, strongly suggesting that these proteins play a physiopathological role in SCA7. CONCLUSIONS: This study validates a novel SCA7 mouse model based on lentiviral vectors, in which strong and sustained expression of MUT ATXN7 in the cerebellum was found sufficient to generate motor defects.


Subject(s)
Ataxin-7/metabolism , DNA-Binding Proteins/metabolism , RNA-Binding Proteins/metabolism , Spinocerebellar Ataxias/genetics , Animals , Ataxin-7/genetics , DNA-Binding Proteins/genetics , Disease Models, Animal , Female , Humans , Lentivirus/genetics , Mice, Inbred C57BL , Neurons/metabolism , Phenotype
15.
Acta Neuropathol ; 132(2): 257-276, 2016 08.
Article in English | MEDLINE | ID: mdl-27138984

ABSTRACT

Endosomal-autophagic-lysosomal (EAL) dysfunction is an early and prominent neuropathological feature of Alzheimers's disease, yet the exact molecular mechanisms contributing to this pathology remain undefined. By combined biochemical, immunohistochemical and ultrastructural approaches, we demonstrate a link between EAL pathology and the intraneuronal accumulation of the ß-secretase-derived ßAPP fragment (C99) in two in vivo models, 3xTgAD mice and adeno-associated viral-mediated C99-infected mice. We present a pathological loop in which the accumulation of C99 is both the effect and causality of impaired lysosomal-autophagic function. The deleterious effect of C99 was found to be linked to its aggregation within EAL-vesicle membranes leading to disrupted lysosomal proteolysis and autophagic impairment. This effect was Aß independent and was even exacerbated when γ-secretase was pharmacologically inhibited. No effect was observed in inhibitor-treated wild-type animals suggesting that lysosomal dysfunction was indeed directly linked to C99 accumulation. In some brain areas, strong C99 expression also led to inflammatory responses and synaptic dysfunction. Taken together, this work demonstrates a toxic effect of C99 which could underlie some of the early-stage anatomical hallmarks of Alzheimer's disease pathology. Our work also proposes molecular mechanisms likely explaining some of the unfavorable side-effects associated with γ-secretase inhibitor-directed therapies.


Subject(s)
Alzheimer Disease/pathology , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Protein Precursor/metabolism , Brain/pathology , Neurons/metabolism , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Autophagy/physiology , Brain/metabolism , Disease Models, Animal , Endosomes/metabolism , Lysosomes/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Neurons/pathology
16.
J Clin Invest ; 126(4): 1525-37, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26999605

ABSTRACT

Autoimmune diseases affect 5% to 8% of the population, and females are more susceptible to these diseases than males. Here, we analyzed human thymic transcriptome and revealed sex-associated differences in the expression of tissue-specific antigens that are controlled by the autoimmune regulator (AIRE), a key factor in central tolerance. We hypothesized that the level of AIRE is linked to sexual dimorphism susceptibility to autoimmune diseases. In human and mouse thymus, females expressed less AIRE (mRNA and protein) than males after puberty. These results were confirmed in purified murine thymic epithelial cells (TECs). We also demonstrated that AIRE expression is related to sexual hormones, as male castration decreased AIRE thymic expression and estrogen receptor α-deficient mice did not show a sex disparity for AIRE expression. Moreover, estrogen treatment resulted in downregulation of AIRE expression in cultured human TECs, human thymic tissue grafted to immunodeficient mice, and murine fetal thymus organ cultures. AIRE levels in human thymus grafted in immunodeficient mice depended upon the sex of the recipient. Estrogen also upregulated the number of methylated CpG sites in the AIRE promoter. Together, our results indicate that in females, estrogen induces epigenetic changes in the AIRE gene, leading to reduced AIRE expression under a threshold that increases female susceptibility to autoimmune diseases.


Subject(s)
Autoimmune Diseases/metabolism , Estrogens/metabolism , Gene Expression Regulation , Sex Characteristics , Transcription Factors/biosynthesis , Adolescent , Adult , Animals , Autoimmune Diseases/genetics , Cells, Cultured , Child , Child, Preschool , CpG Islands , DNA Methylation , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Estrogens/genetics , Female , Humans , Infant , Male , Mice , Mice, Inbred C3H , Middle Aged , Thymus Gland/metabolism , Transcription Factors/genetics , AIRE Protein
17.
Front Mol Neurosci ; 8: 36, 2015.
Article in English | MEDLINE | ID: mdl-26283910

ABSTRACT

Systemic delivery of self-complementary (sc) adeno-associated-virus vector of serotype 9 (AAV9) was recently shown to provide robust and widespread gene transfer to the central nervous system (CNS), opening new avenues for practical, and non-invasive gene therapy of neurological diseases. More recently, AAV of serotype rh10 (AAVrh10) was also found highly efficient to mediate CNS transduction after intravenous administration in mice. However, only a few studies compared AAV9 and AAVrh10 efficiencies, particularly in the spinal cord. In this study, we compared the transduction capabilities of AAV9 and AAVrh10 in the brain, the spinal cord, and the peripheral nervous system (PNS) after intravenous delivery in neonatal mice. As reported in previous studies, AAVrh10 achieved either similar or higher transduction than AAV9 in all the examined brain regions. The superiority of AAVrh10 over AAV9 appeared statistically significant only in the medulla and the cerebellum, but a clear trend was also observed in other structures like the hippocampus or the cortex. In contrast to previous studies, we found that AAVrh10 was more efficient than AAV9 for transduction of the dorsal spinal cord and the lower motor neurons (MNs). However, differences between the two serotypes appeared mainly significant at low dose, and surprisingly, increasing the dose did not improve AAVrh10 distribution in the spinal cord, in contrary to AAV9. Similar dose-related differences between transduction efficiency of the two serotypes were also observed in the sciatic nerve. These findings suggest differences in the transduction mechanisms of these two serotypes, which both hold great promise for gene therapy of neurological diseases.

18.
Expert Opin Emerg Drugs ; 20(3): 353-6, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25920617

ABSTRACT

Spinal muscular atrophy (SMA), one of the most frequent and devastating genetic disorders causing neuromuscular degeneration, has reached the forefront of clinical translation. The quite unique genetic situation of SMA patients, who lack functional SMN1 but carry the misspliced SMN2 copy gene, creates the possibility of correcting SMN2 splicing by antisense oligonucleotides or drugs. Both strategies showed impressive results in pre-clinical trials and are now in Phase II-III clinical trials. SMN gene therapy approaches using AAV9-SMN vectors are also highly promising and have entered a Phase I clinical trial. However, careful analysis of SMA animal models and patients has revealed some limitations that need to be taken very seriously, including: i) a limited time-window for successful therapy delivery, making neonatal screening of SMA mandatory; ii) multi-organ impairment, requiring systemic delivery of therapies; and iii) a potential need for combined therapies that both increase SMN levels and target pathways that preserve/rescue motor neuron function over the lifespan. Meeting these challenges will likely be crucial to cure SMA, instead of only ameliorating symptoms, particularly in its most severe form. This review discusses therapies currently in clinical trials, the hopes for SMA therapy, and the potential limitations of these new approaches.


Subject(s)
Genetic Therapy/methods , Muscular Atrophy, Spinal/therapy , Animals , Dependovirus/genetics , Disease Models, Animal , Genetic Vectors , Humans , Infant, Newborn , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/physiopathology , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 2 Protein/genetics
19.
Acta Neuropathol ; 128(5): 705-22, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24859968

ABSTRACT

There is still no treatment for polyglutamine disorders, but clearance of mutant proteins might represent a potential therapeutic strategy. Autophagy, the major pathway for organelle and protein turnover, has been implicated in these diseases. To determine whether the autophagy/lysosome system contributes to the pathogenesis of spinocerebellar ataxia type 7 (SCA7), caused by expansion of a polyglutamine tract in the ataxin-7 protein, we looked for biochemical, histological and transcriptomic abnormalities in components of the autophagy/lysosome pathway in a knock-in mouse model of the disease, postmortem brain and peripheral blood mononuclear cells (PBMC) from patients. In the mouse model, mutant ataxin-7 accumulated in inclusions immunoreactive for the autophagy-associated proteins mTOR, beclin-1, p62 and ubiquitin. Atypical accumulations of the autophagosome/lysosome markers LC3, LAMP-1, LAMP2 and cathepsin-D were also found in the cerebellum of the SCA7 knock-in mice. In patients, abnormal accumulations of autophagy markers were detected in the cerebellum and cerebral cortex of patients, but not in the striatum that is spared in SCA7, suggesting that autophagy might be impaired by the selective accumulation of mutant ataxin-7. In vitro studies demonstrated that the autophagic flux was impaired in cells overexpressing full-length mutant ataxin-7. Interestingly, the expression of the early autophagy-associated gene ATG12 was increased in PBMC from SCA7 patients in correlation with disease severity. These results provide evidence that the autophagy/lysosome pathway is impaired in neurons undergoing degeneration in SCA7. Autophagy/lysosome-associated molecules might, therefore, be useful markers for monitoring the effects of potential therapeutic approaches using modulators of autophagy in SCA7 and other autophagy/lysosome-associated neurodegenerative disorders.


Subject(s)
Autophagy/physiology , Brain/pathology , Lysosomes/metabolism , Lysosomes/pathology , Nerve Tissue Proteins/metabolism , Spinocerebellar Ataxias/pathology , Animals , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Ataxin-7 , Beclin-1 , Carrier Proteins/genetics , Carrier Proteins/metabolism , Case-Control Studies , Cell Line, Transformed , Female , Gene Expression Regulation/genetics , Humans , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/pathology , Lysosomes/ultrastructure , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Transgenic , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/ultrastructure , Phosphate-Binding Proteins , Signal Transduction/genetics , Small Ubiquitin-Related Modifier Proteins/genetics , Small Ubiquitin-Related Modifier Proteins/metabolism , Spinocerebellar Ataxias/genetics , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Trinucleotide Repeats/genetics
20.
Hum Gene Ther ; 24(7): 670-82, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23799774

ABSTRACT

On the basis of previous studies suggesting that vascular endothelial growth factor (VEGF) could protect motor neurons from degeneration, adeno-associated virus vectors (serotypes 1 and 9) encoding VEGF (AAV.vegf) were administered in a limb-expression 1 (LIX1)-deficient cat-a large animal model of lower motor neuron disease-using three different delivery routes to the central nervous system. AAV.vegf vectors were injected into the motor cortex via intracerebral administration, into the cisterna magna, or intravenously in young adult cats. Intracerebral injections resulted in detectable transgene DNA and transcripts throughout the spinal cord, confirming anterograde transport of AAV via the corticospinal pathway. However, such strategy led to low levels of VEGF expression in the spinal cord. Similar AAV doses injected intravenously resulted also in poor spinal cord transduction. In contrast, intracisternal delivery of AAV exhibited long-term transduction and high levels of VEGF expression in the entire spinal cord, yet with no detectable therapeutic clinical benefit in LIX1-deficient animals. Altogether, we demonstrate (i) that intracisternal delivery is an effective AAV delivery route resulting in high transduction of the entire spinal cord, associated with little to no off-target gene expression, and (ii) that in a LIX1-deficient cat model, however, VEGF expressed at high levels in the spinal cord has no beneficial impact on the disease course.


Subject(s)
Genetic Therapy/methods , Genetic Vectors/metabolism , Motor Neuron Disease/therapy , Vascular Endothelial Growth Factor A/metabolism , Administration, Intravenous , Analysis of Variance , Animals , Blotting, Western , Cats , Cisterna Magna/metabolism , DNA Primers/genetics , Dependovirus/genetics , Enzyme-Linked Immunosorbent Assay , Gene Transfer Techniques , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Green Fluorescent Proteins/metabolism , Motor Cortex/metabolism , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Spinal Cord/metabolism , Transduction, Genetic , Transgenes/genetics , Vascular Endothelial Growth Factor A/administration & dosage , Vascular Endothelial Growth Factor A/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...